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ABSTRACT
Iterative search combined with machine learning is a promising ap-
proach to design optimizing compilers harnessing the complexity
of modern computing systems. While traversing a program op-
timization space, we collect characteristic feature vectors of the
program, and use them to discover correlations across programs,
target architectures, data sets, and performance. Predictive mod-
els can be derived from such correlations, effectively hiding the
time-consuming feedback-directed optimization process from the
application programmer.

One key task of this approach, naturally assigned to compiler ex-
perts, is to design relevant features and implement scalable feature
extractors, including statistical models that filter the most relevant
information from millions of lines of code. This new task turns out
to be a very challenging and tedious one from a compiler construc-
tion perspective. So far, only a limited set of ad-hoc, largely syn-
tactical features have been devised. Yet machine learning is only
able to discover correlations from information it is fed with: it is
critical to select topical program features for a given optimization
problem in order for this approach to succeed.

We propose a general method for systematically generating nu-
merical features from a program. This method puts no restrictions
on how to logically and algebraically aggregate semantical prop-
erties into numerical features. We illustrate our method on the
difficult problem of selecting the best possible combination of 88
available optimizations in GCC. We achieve 74% of the potential
speedup obtained through iterative compilation on a wide range of
benchmarks and four different general-purpose and embedded ar-
chitectures. Our work is particularly relevant to embedded sys-
tem designers willing to quickly adapt the optimization heuristics
of a mainstream compiler to their custom ISA, microarchitecture,
benchmark suite and workload. Our method has been integrated
with the publicly released MILEPOST GCC [14].
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1. INTRODUCTION AND RELATED WORK
Sophisticated search techniques to optimize programs or improve

default compiler heuristics have been proposed to cope with the
complexity of modern computing systems [35, 30, 25, 8, 4, 32, 7,
20, 28, 16, 17, 12]. These techniques are already used in indus-
try [10, 1, 18, 9], require little knowledge of underlying hardware
and can adapt to new environments. However they are still very
restrictive in practice due to an excessively large number of evalu-
ations (recompilations and runs). Machine learning (ML) was in-
troduced to make such search techniques practical and reduce opti-
mization time by enabling optimization knowledge reuse [26, 31, 2,
6]. These studies rely on quantitative characterization of a program
to build associations between similar programs and similar opti-
mization spaces. Such a characterization is represented by a vector
of floating point numbers, called numerical features (for example,
the average basic block size may be one such numerical feature).
These vectors provide the base for defining different optimizations
heuristics, cost-models, and more. It is of critical importance for
ML techniques to capture program similarities that effectively cor-
respond to similarities in program optimizations.

Compiler experts have been responsible for identifying the quan-
titative program characteristics relevant for the problem being ad-
dressed. For some extensively investigated optimizations includ-
ing unrolling, inlining, scheduling and register allocation, several
static heuristics were designed based on numerical features. These
heuristics involve analytical cost models to provide quantitative
estimates of the effects of an optimization [27]. Beyond analyti-
cal models, empirical and feedback-directed approaches have also
been proposed to guide optimization experts and to help compiler
designers [29].

One of the first statistical ML techniques used successfully for
solving several compiler optimizations problems is presented in
[24]. The information required by the ML component is a vector of
numerical features. We note that the optimizations addressed: un-
rolling, inlining, register allocation, scheduling, etc., all have well-
known static heuristics from which these numerical features were
drawn by a compiler expert [27].



Some optimization interferences are nearly impossible to pre-
dict by a compiler expert. Optimizing performance by tuning op-
timization flags may be somewhat accessible to an expert for well-
understood application characteristics [36], but it quickly becomes
intractable when dealing with the fine-tuning of more obscure op-
timization passes. Besides, this task is entirely dependent on the
availability of quantitative features of the program, and on their rel-
evance to the optimization problem. To address this challenge, we
experimented with extensive sets of numerical features. This lead
us to consider feature extraction as a general translation problem of
a given program representation into numerical feature spaces. Un-
like ordinary program properties maintained in compiler internals,
numerical features must be comparable across different programs
and target architectures. Cross-program and cross-target compara-
bility is necessary for the correlations to be statistically representa-
tive, hence for ML predictions to be robust.

One important comparability requirement is that the size of the
numerical feature vector be constant. As the number of variables,
instructions, loops, basic blocks etc. in a program varies, the in-
formation about their properties therefore needs to be aggregated.
This implies that we might provide inaccurate information for the
machine learning component in some cases. To address this prob-
lem, we consider more sophisticated, semantically rich properties.
For instance, such a property for a given loop may be if the loop
is countable, consists of a single basic block, and contains no store
instructions. The flexibility required for supporting such complex
properties was achieved by an underlying generative mechanism
that allows the derivation of complex properties from simpler ones.

A given representation of the program is translated into numeri-
cal features in two stages. First we translate the program represen-
tation into an intermediate form that contains the basic properties
of the program. Then, the second stage performs the derivation
of more complex properties, as well as the aggregation needed in
order to finally extract the previously established number of numer-
ical features.

The basic properties of a program appear in the compiler’s inter-
nal representation at compilation time. These properties, extracted
from the program in the first stage determine the possible features
that can be derived in the second stage. We therefore designed the
first stage to extract an exhaustive coverage of the compiler’s global
data structures representing the program being compiled.

In our approach, the compiler expert is responsible for choos-
ing the basic properties to be extracted from the program and this
way defining the space of possible features that can be derived from
them. We will demonstrate how to use header files of the compiler
to extract basic properties of the program. This approach can be
automated, facilitating the complete automation of the feature ex-
traction process.

In a machine learning compiler, numerical features are the quan-
titative links between the properties of the program and the predic-
tive models that complement (or substitute) human-crafted heuris-
tics. Identifying the factors that affect the performance of a given
optimization is a time-consuming task. In addition a human can
consider only a simplified model of the program, where many char-
acteristics are ignored. Contrary to this, machine learning tech-
niques are able to process huge amounts of data, and may work
with a much more detailed and accurate model of a program.

We believe that compiler expertise is still required, but at a dif-
ferent level. For instance, the structure of the control-flow graph
(CFG) may affect the output of a given optimization. But instead
of requiring the compiler expert to point to the characteristics of the
CFG that play a role in the decision, compiler expertise is employed
to generate a space of candidate features that can be derived from

the CFG; the machine learning component is responsible for deriv-
ing the most relevant characteristics. Without the machine learning
component, the compiler expert would have to resort to a simpler
predictive model, with a high probability of missing important cor-
relations.

In our view, the problem of automatically generating numeri-
cal features consists of automatically inferring properties of the
program and automatically aggregating these properties into fea-
tures. These two sub-problems are reminiscent of automated theo-
rem proving: starting from a set of basic properties, inference rules
can be designed to infer all possible properties. This is precisely the
approach we follow. We currently rely on a semi-automatic, logic
programming approach to drive the inference towards a bounded
set of features; a more futuristic direction would be to further auto-
mate the process, synthesizing new features on demand.

In our approach the program is view as a labeled graph, and
Datalog [33] a first-order logic notion is used for representing this
graph. This provides an alternative view of the program as a deduc-
tive (an extension of relational) database. The features are provided
by evaluating Datalog (or Prolog) queries over this database.

To our best knowledge the only work taking a similar view and
generating program features automatically from intermediate rep-
resentation was introduced recently in [22, 23] - the program is
represented by a XML database, and features are provided by eval-
uating Xquery expressions over this database. We note that only a
single major compiler data structure, the IR (the intermediate rep-
resentation) is processed. The IR used is basically a three-address
representation - as a graph this is a tree with a fixed hierarchical
structure. Our work addresses several major compiler data struc-
tures (beside the IR), represented as graphs with a more complex
structures. In addition we provide techniques for translating the
program information into a Datalog representation which is then
used to generate the features.

It was already shown [34] that Datalog representation is suitable
for even complex compiler analysis. Inferring new program proper-
ties (to be later aggregated into features) requires in fact performing
compiler analysis, and the XML representation seems less appro-
priate for this. Furthermore, by viewing the program as a labeled
graph represented by Datalog notation we could take advantage of
related body of work done in graph (and multi-relational) data min-
ing and ILP (inductive logic programming). We define the space of
possible features - this space is huge and an exhaustive exploration
is not possible. Similar with [21] we show how this space could be
structured and its structure used for effective exploration.

Based on the techniques presented in this paper, we implemented
a feature extractor for the GCC compiler, and applied supervised
ML techniques for learning optimal settings of the flags. We eval-
uate our approach on several platforms using combinations of all
available compiler optimizations, making it a practical and realistic
approach.

Typical machine learning compilers [26, 31, 2, 6, 11] are com-
posed of two main phases, as shown in Figure 1: a training phase
and a prediction phase. In the training phase optimization tools
gather information about the structure of a training set for different
programs, architectures, data sets, etc. The tools extract program
features, apply different combinations of optimizations to each pro-
gram, profile and execute the resulting variants, and record the
speedups. A predictive model is then built by correlating program
features, optimizations and speedups. In the prediction phase, fea-
tures of a new program are extracted and fed into the predictive
model that suggests a “good” combination of optimizations, with
the goal of reducing execution time or other optimization objectives
such as code size and power consumption. Such techniques show
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Figure 1: Typical machine learning scenario to predict “good” optimizations for programs. During a training phase (from left to
right) a predictive model is built to correlate complex dependencies between program structure and candidate optimizations. In the
prediction phase (from right to left), features of a new program are passed to the learned model and used to predict combinations of
optimizations.

great potential but require large number of compilations and exe-
cutions as training examples. Moreover, although program features
are one of the key components of any machine learning approach,
little attention has been devoted so far to ways of extracting them
from program semantics.

2. FEATURE EXTRACTION
We may consider a program as being characterized by a number

of entities. Some of these entities are a direct mapping of similar
entities defined by the specific programming language, while others
are generated during compilation. These entities include:

• functions;

• instructions and operands;

• variables;

• types;

• constants;

• basic blocks;

• loops;

• compiler-generated temporaries.

2.1 Relational View of a Program
A relation over one or more sets of entities is a subset of their

Cartesian product. Relations can be used to express statements
about tuples of entities, i.e., they define predicates. For example,
we can define a relation opcode = {(ik,opl) | instruction ik has op-
code opl}⊆ I×OPS, where I is the set of program instructions and
OPS is the set of all opcodes. Then, the statement opcode(ik,opl)
is the claim that instruction ik has opcode opl . This statement is
true or false depending on the set of pairs constituting the relation
opcode. As another example the relation in ⊆ I ×B, in = {(ik,bl )
| instruction ik is in basic block bl}, where B is the set of basic
blocks, expresses the membership of instructions in basic blocks.

During compilation more complex relations among entities are
computed, providing supplementary information about the program
being compiled. Some of these relations, common to almost every
optimizing compiler are:

• call graph;

• control flow graph (CFG);

• loop hierarchy;

• control dependence graph;

• dominator tree;

• data dependence graph;

• liveness information;

• availability information;

• anticipatibility information;

• alias information.

For example, the control flow graph can be viewed as a rela-
tion over pairs of basic blocks. New entities and relations relevant
to specific optimizations of interest should be considered. For in-
stance if information concerning register pressure is important, new
entities and relation such as live range and interference graph, re-
spectively, need to be considered.

Furthermore, the language in which the application is written
also gives rise to entities and relations worth considering. As an
example, a class entity and a class hierarchy graph (CHG) relation
are relevant for programs written in object-oriented languages such
as C++.

We prefer to focus on generic compilation entities and relations
(such as the ones enumerated above) over entities and relations that
are specific to certain compilers. The features we consider are thus
defined in generic compilation terms, ensuring that our work is
portable across different optimizing compilers.

We restrict our attention and extract only binary relations from
the program. This is not restrictive, as every k-arity relation can
be expressed by a set of k + 1 binary relations. This assumption
implies a graphical representation of the relations, a labeled graph
(i.e. semantic network). The labels of the vertices are provided by
the entities and the labels of the edges are provided by the relations.
For a relation r ⊆ E1×E2, a fact r(a,b) is represented by two nodes
with labels E1 and respective E2 connected by an edge with label r.

In this program graph, important subgraphs correspond to major
compiler data structures such as CFG, def-use chains, IR (the inter-
mediate language) etc. In order to take advantage of their specific
properties, we may consider each of these subgraphs separately.

In conclusion, a program may be represented as a collection of
(binary) relations over sets of entities, i.e., as a relational database.
Our first step is therefore to provide such a representation from the



compiler’s data structures. We use the Datalog language [33] for
this task, as we describe next.

2.2 Datalog
We use the Datalog logic-based notation to describe relations.

Datalog is a Prolog-like language, but with more restricted seman-
tics, suitable for expressing relations and operations on them [3],[33].
Datalog allows us to provide rules for defining and computing new
relations from existing ones.

The elements of Datalog are atoms of the form p(X1, ...,Xn)
where p is a predicate and X1,..., Xn are variables or constants. By
convention names beginning with lower case letters are used for
constants and predicates, while names beginning with upper case
letters are used for variables. A ground atom is a predicate with
only constants as arguments.

A Datalog database consists of a list of rules. Each Datalog rule
has the form H :−B1,B2, ...Bn, where H,B1, ..,Bn are atoms. H
is called the head of the rule, and B1,B2, ...,Bn form the body of
the rule. The body of the rule is optional (i.e., n ≥ 0). Bodyless
rules are called facts, and can be used to define relations by explicit
enumeration. For example, the two facts x(1,2) and x(3,5) define
x as the relation {(1,2),(3,5)}. Rules with bodies serve to infer the
head relation from the body relations; meaning that whenever we
substitute constants for the variables in the atoms, and this substi-
tution makes all the body predicates true, then the head predicate
must also be true.

A Datalog query has the form :−B1,B2, ...Bn, where B1, ..,Bn
are atoms. An answer to a given query is a set of constants such
that when substituted for the variables in the atoms, all predicates
of the query become true. A query may result in many answering
substitutions.

To obtain a Datalog representation of the program, we enumerate
the elements of every entity of interest: variables V = v1,v2, ...,
types T = t1,t2, ..., instructions I = i1, i2, i3..., basic blocks B =
b1,b2,b3..., etc. We then extract from the compiler’s data structures
relations over these entities. For example we specify the relation
in ⊆ I ×B, in = {(ik,bl ) | instruction ik is in basic block bl} by a
sequence of Datalog ground atoms of the form in(ik,bl).

Datalog is able to work with relations and perform operations
on them whose results in turn are relations as well. All standard
relational algebra operations [33] are expressible, the most useful
(for our purposes) being the conjunction (join) of two relations.
For instance starting with the relations store and in, Datalog can
compute the relation st_in ⊆ I×B formed from all pairs (i,b) such
that instruction i is a store instruction in basic block b. In Datalog
this computation is triggered by the rule

st_in(I,B) : −store(I), in(I,B).

2.3 Automatic Inference of New Relations
Given a set of basic relations (such as those listed in Section 2.1),

further useful relations can be inferred, including very complex
ones. For example, Whaley and Lam [34] were able to perform
interprocedural context sensitive alias analysis using Datalog in-
ference. Although, as a general rule it is impractical to infer very
complex relations automatically, it is still useful to infer new rela-
tions easily with Datalog, albeit of limited complexity.

The main operation we use for relation inference is the joining
of two relations: given two relations r ⊆ E1 × ·· · × Ek and p ⊆
F1 ×·· ·×Fl such that some of the Es are identical to some of the
Fs, we select a nonempty subset I of pairs of identical entities and
essentially concatenate the two relations with the common entities
(in I) appearing only once. The simplest way to explain this is
through a Datalog example. Suppose the two relations are r ⊆ E1×

E2×E3 and p ⊆ F1×F2×F3 such that E2 = F1 and E3 = F2. Then
we can join the two relations in the following three ways.

rel1(E1, E2, E3, F2, F3) :-
r(E1, E2, E3), p(E2, F2, F3).

rel2(E1, E2, E3, F1, F3) :-
r(E1, E2, E3), p(F1, E3, F3).

rel3(E1, E2, E3, F3) :-
r(E1, E2, E3), p(E2, E3, F3).

By repeated joining, starting from a set of basic relations, we
can obtain new relations of increasing complexity. As the example
shows, this is straightforward to automate. In a practical setting,
though, the number of relations and their complexity must be kept
to a limit. For example, we may limit the number of joinings that
lead to a relation, the number of times any relation may appear in
such a sequence, the arity of the resulting relation, and more.

2.4 Extracting Relations from Programs
During compilation a compiler maintains an internal representa-

tion of the program being compiled using several data structures.
We use the definitions of these data structures to extract and iden-
tify basic entities and relations. The data types express the enti-
ties: in C such data types are typically of type struct T, having a
number of fields1. Each such field may define a relation between
the entity represented by the parent struct and the entity repre-
sented by the type of the field. For example, the data structure for
an edge of a control-flow graph can be a struct edge containing
two fields src and trg (among others) that are pointers to struct
basic_block, as in the case of GCC. The data types struct edge
and struct basic_block introduce two entities E and B, and the
fields src and trg introduce two relations over E ×B: edge_src
and edge_trg.

The above mechanical method provides compiler specific enti-
ties and relations, which we then map to generic entities and re-
lations. This mapping may be straightforward as in the example
above, or may require some additional processing and semantic
understanding. For example, GCC uses struct tree to represent
different generic entities such as variables and types, with a selector
field in the struct identifying the intended semantics. Other fields
of this data structure are overloaded, and their meaning depends
on the entity the tree represents. For example, one of the fields
in a struct tree that represents a variable contains a pointer to
another struct tree that represents the variable’s type. Knowing
this allows us to deduce a relation on (variable,variable type) pairs.

2.5 Extracting Features from Relations
A machine learning tool requires a quantitative measurement of

the program, provided by a vector of numerical features. In this
section we present several techniques for deriving numerical fea-
tures from a relational representation of the program.

We consider first the case of entities having numerical values.
These values may need to be aggregated into their sum, average,
variance, max, min, etc., and in this way produce numerical fea-
tures for the relation. For example, given relation

count = {(b,n) |b is a basic block

whose estimated number of executions is n},
we may want to compute numerical features such as the maximal
number of estimated executions of a basic block, or the average
number of estimated executions of a basic block.
1We focus on C because our work is implemented in the context of
GCC, which is written in C.



We focus now on the case of entities having categorical values
(i.e., symbols). Most of the entities important for the compilation
process belong to this class. Typically, numerical features describ-
ing relations over such entities provide information on basic struc-
tural aspects of the relation such as the number of tuples in the re-
lation, the maximum out-degree of nodes in a tree relation, etc. We
show how to extract several typical types of numerical features by
applying the standard selection and projection operations, together
with the num operator, defined as returning the number of tuples in
a relation.

First we note that applying num to a relation already provides a
numerical feature which is often of interest. This is particularly
so in the case of unary relations (e.g., number of basic blocks)
but may also be the case for higher arity relations (e.g., number
of edges in the control flow graph). Also, applying num to the
projection of relation r on dimension i—yielding the unary rela-
tion ri = {e |∃t ∈ r such that t has e at position i}—often provides
an interesting numerical feature. For example, consider the relation

st_in_block = {(i,b) | i is a store instruction in basic block b}.
Then num(st_in_block1) is the number of stores in all basic blocks,
while num(st_in_block2) is the number of basic blocks containing
store instructions.

We consider now the case of a binary relation r ⊆ E1 ×E2. For
every element e ∈ Ei, 1 ≤ i ≤ 2, we consider the selection induced
by this element, i.e., the relation ri(e) defined as the set of pairs
in r that contain e at position i. By associating with e the value of
num(ri(e)) we define a new relation in Ei×N. For this relation, nu-
merical features can be derived by aggregating the numerical values
in the second position.

For example, consider again the relation st_in_block. For a given
basic block b, the value num(st_in_block2(b)) is the number of
store instructions in basic block b. Thus the relation consisting
of all pairs (b,num(st_in_block2(b))) associates each block with
the number of store instructions it contains. By aggregating these
counts we may obtain numerical features such as the average num-
ber of stores in a basic block.

For the general case of a k-arity relation r where k > 2, we may
derive a number of binary relations by considering the projection
of r on any two dimensions i, j, i �= j. For each such binary rela-
tion we derive new features by the above technique. Furthermore,
for a relation r ⊆ E1 × ...Ek we can also consider any two disjunct
subsets I and J of the index set {1, . . .k}. The projection of r on the
dimensions in I and J may be seen as a binary relation over the sets
S1 = Ei1 ×·· ·×Eip and S2 = E j1 ×·· ·×E jq , where I = {i1, . . . , ip}
and J = { j1, . . . , jq}. Again, for this binary relation new numerical
features may be derived.

The techniques described above for derivations of numerical fea-
tures from relations can be automated. We implemented the extrac-
tion of numerical features from the Datalog-derived representation
of the program in Prolog, as the required aggregation operations
are not supported in Datalog.

2.6 Structural Code Patterns
In the previous section we examined some basic structural prop-

erties of a graph as number of edges, average number of neighbors
for a vertex etc. These properties represent poorly the graph struc-
ture for labeled graphs with a small number of labels for vertices
and edges (e.g., CFG, DDG, dominator tree, etc.). We try to char-
acterize such graphs by a number of (subgraph) patterns - the nu-
merical features are provided by the number of occurrences of such
patterns in the graph.

For instance, the control flow graph (CFG) may be considered

as a relation over B×B, where B is the set of basic blocks. New
relations over B×B may be induced from this relation by taking
into account the way in which two basic blocks are connected. For
example, we may consider blocks connected via an if-then or an
if-then-else pattern in CFG. The following Datalog rules provide
possible definitions for these two relations. (In this example the
relation bb_edge specifies whether two basic blocks are connected
by an edge in the CFG.)

bb_ifthen(B1,B3) :-
bb_edge(B1,B3), bb_edge(B1,B2), bb_edge(B2,B3).

bb_ifthen_else(B1,B4) :-
bb_edge(B1,B2), bb_edge(B1,B3),
bb_edge(B2,B4), bb_edge(B3,B4).

These new relations may in turn induce new relations over basic
blocks connected via nested if-then or if-then-else patterns.
The following Datalog rule provides a possible definitions for a
relation having as elements pairs of basic blocks connected via a
direct edge and a nested if-then pattern (an if-then pattern in
which the then alternative is itself an if-then pattern).

bb_ifthen_n(B1,B4) :-
bb_edge(B1,B4), bb_edge(B1,B2),
bb_ifthen(B2,B3), bb_edge(B3,B4).

In a similar way we may derive relations describing patterns in
any graph structure computed during compilation. These patterns
can be described easily by Datalog rules. The semantics of the
graph structure being analyzed provide guidance in selecting the
patterns to consider. Additional knowledge about the code may
help further trim the pattern space. For instance, knowing that for
C programs without switch statements every node has at most two
successors in the CFG could limit the number of possible patterns
we look for.

Other patterns in graphs such as cycles may be considered as
well. For the CFG, the loop structure may be extracted either from
relevant data structures of the compiler if available, or by com-
puting simple patterns directly from the CFG, such as single basic
block loops or innermost loops with a simple structure (e.g., con-
taining a single if-then pattern inside the loop body).

Finally we note that every binary relation r ⊆ E × F can be
viewed as a bipartite graph in which the partite sets correspond
to E and F. For example, the def -use relation over operand pairs
induces a bipartite graph in which one of the partite sets consists of
the def s and the other consists of the uses. This allows us to apply
the techniques presented in this section to any binary relation. For
instance, let r denote the def -use relation. then the web relation
below defines a web pattern in the bipartite graph corresponding to
the def -use relation.

web(E1,E2,F1,F2) :-
r(E1,F1), r(E2,F1), r(E1,F2), r(E2,F2).

As can be seen, a large number of structural patterns can be eas-
ily expressed and tested using our feature extraction framework.
Techniques for exploring the space of structural patterns are further
discussed in the next subsection.

2.7 Exploring the Structural Pattern Space
In our framework, Datalog queries are used to represent sub-

graph patterns. For a query q, its f requency(q,r) is defined as the
number of substitutions for which the query is true with respect to



a Datalog database r. The frequency provides a metric for a pat-
tern that maps the pattern to a feature. Given a set of patterns, the
features vector is provided by their frequencies. Thus, the features
space is determined by Datalog patterns (i.e. queries) space.

We use a pattern growth approach, in which more complex pat-
terns are successively derived from a set of initial patterns. We re-
fine the scheme of inference of new relations presented previously
by imposing constraints (chosen by a compiler expert) on the vari-
ables. In this way only potentially important patterns are generated,
significantly reducing the space of patterns to be considered.

We exemplify our extension techniques for the case of the CFG,
represented by the relation bb_edge ⊆ B×B. The possible queries
are sequences of bb_edge predicates of arbitrary length

:−bb_edge(X1,X2),bb_edge(X1,X3),bb_edge(X3,X4), ...

For each variable X1,X2, . . . in the sequence, some constraints con-
trol the sharing of variables between the bb_edge predicates. The
constraints are of the form (m,n) where m is the maximal num-
ber of occurrences of the variable as the first argument, and n is
the maximal number of occurrences of the variable as the second
argument. Intuitively these constraints limit the number of prede-
cessors and successors for the vertices substituted to the variable
and are chosen on basis of domain expert knowledge - for CFG the
constraints chosen are (1,2),(2,1),(1,1),(2,2).

A query is extended by adding at each step a bb_edge predicate.
If a new variable is introduced, the possible four constraints men-
tioned above should be attached to it - in fact there are four new
resulting relations. If no variable is introduced, the addition of the
new added predicate (that uses two existent variables) should con-
form with the constraints imposed on the variables. As an example
we consider the query below, the constrains associated with the
variables, and a possible legal extension:

constraint(B1) = (2,2)
constrains(B2) = (1,1)
constrains(B3) = (2,1)

Before extension
:- bb_edge(B1,B2), bb_edge(B1,B3).

After extension
:- bb_edge(B1,B2), bb_edge(B1,B3), bb_edge(B2,B3).

We note that after the extension variable B2 could not be further
shared with any newly added predicate as this would violate its
constraints. Similarly B1 and B3 could not appear as the first and
second arguments of a newly added predicate, respectively.

We note that our techniques could be extended to any labeled
graph. As mentioned before the compiler expert should define the
constraints to be used based on the specific properties of the graph.

The pattern growth approach previously described, introduces
a partial order ≺ over the set of Datalog queries, where q1 ≺ q2
means that query q2 is an extension of query q1. The pattern space
is the lattice spanned by the partial order ≺; the inference of the
patterns may be seen as a search problem in this space.

For a collection S of Datalog databases, we define the support of
a query q with respect to S as

support(q,S) = |{r ∈ S | f requency(q,r) > 0}|
— intuitively the number of databases r where the pattern g occurs.
A pattern q is called frequent [21] if support(q,S) is greater or
equal to a threshold specified by the user.

The specialization operator is anti-monotonic w.r.t. to the sup-
port relation for a set S of Datalog databases, i.e. if q1 ≺ q2 then

support(q1,S) ≥ support(q2,S). The anti-monotonicity property
allows us to effectively prune the extension of a query — if a query
is not frequent, then none of its extensions are frequent.

3. METHODOLOGY
In our work we attempt to overcome two major methodological

flaws that limit the dissemination of current and past research on
iterative compilation and machine learning compilation, namely:

• the use of proprietary, unreleased or outdated transformation,
compilation and feature extraction tools;

• the very limited set of optimizations and features, making it
difficult or even impossible to replicate and improve upon
previous results.

In an attempt to curb these tendencies, we decided to implement
our feature extractor inside the popular, free software, production-
quality GCC compiler [13]. Recent versions of GCC achieve per-
formance levels competitive with the best commercial and research
compilers. GCC also supports a large number of platforms, a large
and fast-growing number of optimizations, and modern intermedi-
ate representations facilitating the extraction of semantically rich
properties and features. It is a unique tool available for research
purposes in compilation of real-world applications.

Based on the techniques described in the previous section, we
implemented our feature extractor as additional passes in GCC 4.2-
4.4 versions [14]. It is invoked on demand after the compiler gen-
erates the data needed for producing features. The feature extractor
works in two stages:

• extracting a relational representation of the program;

• computing a feature vector based on this representation.

4. EVALUATION
The technique presented in this paper shows how to automate

and generalize feature extraction for use in predicting good opti-
mizations. To make its benefits more concrete, we propose a com-
plete and realistic scenario about how a compiler expert may in-
crementally enhance a machine learning compiler. We assume the
compiler expert is working in an embedded system design group,
targeting an ARC 725D 700MHz embedded processor – ARC. As
is common in such a context, the design group is very small and
does not have the resources to tune the heuristics, optimization pass
selection and compilation flags for this particular platform.

We use the popular, freely-available MiBench [15] benchmark
suite that comes with a variety of embedded and general-purpose
desktop applications.

1. The expert first constructs a search space where significant
speedups can be obtained using traditional iterative compila-
tion.

2. She uses this space to build a machine learning model.

3. She trains this model over multiple (desktop and server) plat-
forms: AMD – Athlon 64 3700+, IA32 – Intel Xeon 2.8GHz,
IA64 – Itanium2 1.3GHz.

4. The expert aims to use this knowledge base to predict how to
select the best optimizations, when running the same bench-
marks but on the embedded ARC target.
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Figure 2: Speedups obtained using iterative search on 3 platforms (500 random combinations of optimizations with 50% probability
to select each optimization)
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Figure 3: Speedups when predicting best optimizations based on program features in comparison with the achievable speedups after
iterative compilation based on 500 runs per benchmark (ARC processor)

5. In the process, her first experiments are disappointing: the
predictions achieved by the model only reach a fraction of the
performance of the best combination of optimizations avail-
able in the search space.

6. The expert identifies the source of the problem using stan-
dard statistical metrics [19]. It may come from a model over-
fit due to a limited number of features, or to lack of effective
correlations between these features and the semantical prop-
erties that actually impact performance on the ARC platform.

7. The expert designs and implements new program feature ex-
tractors, leveraging her understanding of the optimization
process and of the performance anomalies involved.

8. She incrementally adds these features into the training set,
until the predictive model shows relevant results.

9. To finalize the tuning, and improve compilation and training
time, she performs principal component analysis (PCA) to
narrow down the set of features that really make an impact
on her platform of interest.

As outlined in the use case scenario, the training of the machine
learning model has been performed on all benchmarks and all plat-
forms, except ARC which we used as a test platform for optimiza-
tion predictions.

To illustrate this scenario in practice, we applied 500 random
combinations of 88 compiler optimizations that are known to influ-
ence performance, with 50% probability of being selected, and run
each program variant 5 times. To make the adaptive optimization
fully transparent, we directly invoke optimization passes inside a
modified GCC pass manager. Figure 2 shows speedups over the
best GCC optimization level -O3 for all programs and all architec-
tures. It confirms the previous findings about iterative compilation
[10, 1, 28, 17] — that it is possible to considerably improve per-
formance over default compiler settings, which are tuned to per-
form well on average across all programs and platforms. In order
to help end-users and researchers reproduce results and optimize
their programs, we made experimental data publicly available in
the Collective Optimization Database at [9]. Note that the same
combination of optimizations found for one benchmark, for exam-
ple, susan_corners on AMD, does not improve execution time of



Feature # Description:
ft1 Number of basic blocks in the method
ft2 Number of basic blocks with a single successor
ft3 Number of basic blocks with two successors
ft4 Number of basic blocks with more than two successors
ft5 Number of basic blocks with a single predecessor
ft6 Number of basic blocks with two predecessors
ft7 Number of basic blocks with more than two predecessors
ft8 Number of basic blocks with a single predecessor and a single successor
ft9 Number of basic blocks with a single predecessor and two successors
ft10 Number of basic blocks with a two predecessors and one successor
ft11 Number of basic blocks with two successors and two predecessors
ft12 Number of basic blocks with more than two successors and more than two predecessors
ft13 Number of basic blocks with number of instructions less than 15
ft14 Number of basic blocks with number of instructions in the interval [15, 500]
ft15 Number of basic blocks with number of instructions greater than 500
ft16 Number of edges in the control flow graph
ft17 Number of critical edges in the control flow graph
ft18 Number of abnormal edges in the control flow graph
ft19 Number of direct calls in the method
ft20 Number of conditional branches in the method
ft21 Number of assignment instructions in the method
ft22 Number of unconditional branches in the method
ft23 Number of binary integer operations in the method
ft24 Number of binary floating point operations in the method
ft25 Number of instructions in the method
ft26 Average of number of instructions in basic blocks
ft27 Average of number of phi-nodes at the beginning of a basic block
ft28 Average of arguments for a phi-node
ft29 Number of basic blocks with no phi nodes
ft30 Number of basic blocks with phi nodes in the interval [0, 3]
ft31 Number of basic blocks with more than 3 phi nodes
ft32 Number of basic block where total number of arguments for all phi-nodes is in greater than 5
ft33 Number of basic block where total number of arguments for all phi-nodes is in the interval [1, 5]
ft34 Number of switch instructions in the method
ft35 Number of unary operations in the method
ft36 Number of instruction that do pointer arithmetic in the method
ft37 Number of indirect references via pointers ("*" in C)
ft38 Number of times the address of a variables is taken ("&" in C)
ft39 Number of times the address of a function is taken ("&" in C)
ft40 Number of indirect calls (i.e. done via pointers) in the method
ft41 Number of assignment instructions with the left operand an integer constant in the method
ft42 Number of binary operations with one of the operands an integer constant in the method
ft43 Number of calls with pointers as arguments
ft44 Number of calls with the number of arguments is greater than 4
ft45 Number of calls that return a pointer
ft46 Number of calls that return an integer
ft47 Number of occurrences of integer constant zero
ft48 Number of occurrences of 32-bit integer constants
ft49 Number of occurrences of integer constant one
ft50 Number of occurrences of 64-bit integer constants
ft51 Number of references of local variables in the method
ft52 Number of references (def/use) of static/extern variables in the method
ft53 Number of local variables referred in the method
ft54 Number of static/extern variables referred in the method
ft55 Number of local variables that are pointers in the method
ft56 Number of static/extern variables that are pointers in the method

Table 1: List of program features produced using our technique to be able to predict good optimizations

the bitcount benchmark, and even degrades the execution time of
jpeg_c by 10% on the same architecture. It is of course a clear
signal that program features are key to the success of any machine
learning compiler. This of course does not diminish the importance
of architecture features and data-set features.

Though obtaining strong speedups, the iterative compilation pro-
cess is very time-consuming and impractical in production. We
use predictive modeling techniques similar to [26, 31, 2, 6] to be
able to characterize similarities between programs and optimiza-
tions, and to predict good optimizations for a yet unseen program
based on this knowledge. To validate our results, we decided to

use a state-of-the-art predictive model [2]. This model predicts op-
timizations for a given program based on a nearest-neighbor static
feature classifier, suggesting optimizations according to the simi-
larity of programs. We use a different training set on the embedded
system platform ARC, and the traditional leave-one-out validation
where the evaluated benchmark is removed from the training set,
to avoid strong biasing of the same optimizations from the same
benchmark. When a new program is compiled, features are first
extracted using our tool, then they are compared with all similar
features of other programs using a nearest-neighbor classifier, as
described in [5]. The program is recompiled again with the combi-



nation of optimizations for the most similar program encountered
so far.

As outlined in the use case scenario, we iterated on this baseline
method while gradually adding more and more features. We even-
tually reached 11% average performance improvements across all
benchmarks, out of 15% when picking the optimal points in the
search space (i.e., factors 1.11 and 1.15 in Figure 3. Adding more
features did not bring us more performance on average across the
benchmarks. The list of the 56 most important features identified
in this iterative process that are able to capture complex dependen-
cies between program structure and a combination of multiple opti-
mizations is presented in Table 1. Though we did not reach the best
performance achieved with iterative compilation, we showed that
our technique for automatic feature extraction can already be used
effectively for machine learning, to enable optimization knowledge
reuse and automatically improve program execution time. The sim-
plicity and expressiveness of the feature extractor is one key con-
tribution of our approach: a few lines of Prolog code for each new
feature, building on a finite set of pretty-printers from GCC’s inter-
nal data structures into Datalog entities.

Our results pave the way for a more systematic study of the qual-
ity and importance of individual program features, a necessary step
towards automatic feature selection and the construction of robust
predictive models for compiler optimizations.

Our main contribution is to construct program features by ag-
gregation and filtering of a large amount of semantical properties.
But comparison with other predictive techniques is a relevant ques-
tion in itself, related to the selection of the features and machine
learning classifier or predictor. Our work is intended to ease such
comparisons, transforming the work of others into a common ma-
chine learning optimization platform.

5. CONCLUSION
Though the combination of iterative compilation and machine

learning has been studied for more than a decade and showed great
potential for program optimizations, there are surprisingly few re-
search results on the problem of selecting good quality program
features. This problem is relevant for effective optimization knowl-
edge reuse, to speedup the search for good optimizations, to build
predictive models for compilation heuristics, to select optimization
passes and ordering, to build and tune analytical performance mod-
els, and more.

Up to now, compiler experts had to manually construct and im-
plement feature extractors that best suit their purpose. Without a
systematic way to construct features and evaluate their merits, this
task remains a tedious trial and error process relying on what the
experts believe they understand about the impact of optimization
passes. In a modern compiler like GCC, more than 200 passes com-
pete in a dreadful interplay of tradeoffs and assumptions about the
program and the target architecture (itself very complex and rather
unpredictable). The global impact of these heuristics can be very
far from optimal, even on a major compiler target such as the x86
ISA and its most popular microarchitectural instances. But what
about embedded targets which attract less attention from expert de-
velopers and cannot afford large in-house compiler groups? What
about design-space exploration of the ISA, microarchitecture and
compiler?

So far, a limited set of largely syntactical features have been
devised to prove that optimization knowledge can be reused and
derived automatically from feedback-directed optimization. How-
ever, machine learning is only able to recover correlations (hence
optimization knowledge) from the information it is fed with: it is
critical to select topical program features for a given optimization

problem. To our knowledge, this is the first attempt to propose a
practical and general method for systematically generating numer-
ical features from a program, and to implement it in a production
compiler. This method does not put any restriction on how to logi-
cally and algebraically aggregate semantical properties into numer-
ical features, offering a virtually exhaustive coverage of statistically
relevant information that can be derived from a program.

This method has been implemented in GCC and applied to a
number of general-purpose and embedded benchmarks. We illus-
trate our method on the difficult problem of selecting the optimal
setting of compiler optimizations for improving the performance of
an application, and demonstrate its practicality achieving 74% of
the available speedup obtained through iterative compilation on a
wide range of benchmarks and 4 different general-purpose and em-
bedded architectures. We believe this work is an important step to-
wards generalizing machine learning techniques to tackle the com-
plexity of present and future computing systems. Feature extractor
presented in this paper is now available for download within MILE-
POST GCC at [14] while experimental data is available at [9] to
help researchers reproduce and extend this work.

6. ACKNOWLEDGMENTS
This work was partly supported by the European Commission

through the FP6 project MILEPOST id. 035307 and by the HiPEAC
Network of Excellence.

7. REFERENCES
[1] ACOVEA: Using Natural Selection to Investigate Software

Complexities.
http://www.coyotegulch.com/products/acovea.

[2] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin,
M.F.P. O’Boyle, J. Thomson, M. Toussaint, and C.K.I.
Williams. Using machine learning to focus iterative
optimization. In Proceedings of the International Symposium
on Code Generation and Optimization (CGO), 2006.

[3] A.V. Aho, M.S. Lam, R. Sethi, and J.D. Ullman. Compilers:
Principles, Techniques and Tools. Addison-Wesley, 2nd
edition, 2007.

[4] F. Bodin, T. Kisuki, P.M.W. Knijnenburg, M.F.P. O’Boyle,
and E. Rohou. Iterative compilation in a non-linear
optimisation space. In Proceedings of the Workshop on
Profile and Feedback Directed Compilation, 1998.

[5] Edwin V. Bonilla, Christopher K. I. Williams, Felix V.
Agakov, John Cavazos, John Thomson, and Michael F. P.
O’Boyle. Predictive search distributions. In William W.
Cohen and Andrew Moore, editors, Proceedings of the 23rd
International Conference on Machine learning, pages
121–128, New York, NY, USA, 2006. ACM.

[6] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. O’Boyle,
and O. Temam. Rapidly selecting good compiler
optimizations using performance counters. In Proceedings of
the 5th Annual International Symposium on Code
Generation and Optimization (CGO), March 2007.

[7] K. Cooper, A. Grosul, T. Harvey, S. Reeves,
D. Subramanian, L. Torczon, and T. Waterman. ACME:
adaptive compilation made efficient. In Proceedings of the
Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES), 2005.

[8] K.D. Cooper, P.J. Schielke, and D. Subramanian. Optimizing
for reduced code space using genetic algorithms. In
Proceedings of the Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES), pages 1–9, 1999.



[9] Collective Tuning Infrastructure: automating and
accelerating development and optimization of computing
systems. http://cTuning.org.

[10] ESTO: Expert System for Tuning Optimizations.
http://www.haifa.ibm.com/projects/systems/cot/esto.

[11] Grigori Fursin, Cupertino Miranda, Olivier Temam, Mircea
Namolaru, Elad Yom-Tov, Ayal Zaks, Bilha Mendelson, Phil
Barnard, Elton Ashton, Eric Courtois, Francois Bodin,
Edwin Bonilla, John Thomson, Hugh Leather, Chris
Williams, and Michael O’Boyle. Milepost gcc: machine
learning based research compiler. In Proceedings of the GCC
Developers’ Summit, June 2008.

[12] Grigori Fursin and Olivier Temam. Collective optimization.
In Proceedings of the International Conference on High
Performance Embedded Architectures & Compilers
(HiPEAC 2009), January 2009.

[13] GCC: GNU Compiler Collection. http://gcc.gnu.org.
[14] MILEPOST GCC: Collaborative development website.

http://cTuning.org/milepost-gcc.
[15] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst,

Todd M. Austin, Trevor Mudge, and Richard B. Brown.
Mibench: A free, commercially representative embedded
benchmark suite. In Proceedings of the IEEE 4th Annual
Workshop on Workload Characterization, Austin, TX,
December 2001.

[16] K. Heydemann and F. Bodin. Iterative compilation for two
antagonistic criteria: Application to code size and
performance. In Proceedings of the 4th Workshop on
Optimizations for DSP and Embedded Systems, colocated
with CGO, 2006.

[17] K. Hoste and L. Eeckhout. Cole: Compiler optimization level
exploration. In Proceedings of International Symposium on
Code Generation and Optimization (CGO), 2008.

[18] Shih-Hao Hung, Chia-Heng Tu, Huang-Sen Lin, and
Chi-Meng Chen. An automatic compiler optimizations
selection framework for embedded applications. In Intl.
Conf. on Embedded Software and Systems (ICESS’09), pages
381–387, 2009.

[19] Raj Jain. The Art of Computer Systems Performance
Analysis. John Wiley and Sons, 1991.

[20] P. Kulkarni, W. Zhao, H. Moon, K. Cho, D. Whalley,
J. Davidson, M. Bailey, Y. Paek, and K. Gallivan. Finding
effective optimization phase sequences. In Proc. Languages,
Compilers, and Tools for Embedded Systems (LCTES), pages
12–23, 2003.

[21] L.Dehaspe and H.Toivonen. Discovery of frequent datalog
patterns. In Data Mining and Knowledge Discovery, pages
7–36, 1999.

[22] H. Leather, E. Yom-Tov, M. Namolaru, and A. Freund.
Automatic feature generation for setting compilers heuristics.
In 2nd Workshop on Statistical and Machine Learning
Approaches Applied to Architectures and Compilation
(SMART’08), colocated with HiPEAC’08 conference, 2008.

[23] Hugh Leather, Edwin Bonilla, and Michael O’Boyle.
Automatic feature generation for machine learning based
optimizing compilation. In Proceedings of the International
Symposium on Code Generation and Optimization, pages
81–91, Washington, DC, USA, 2009. IEEE Computer
Society.

[24] S. MacLane. Categories for the Working Mathematician,
volume 5 of Graduate Texts in Mathematics. Springer
Verlag, Berlin, 1971.

[25] F. Matteo and S. Johnson. FFTW: An adaptive software
architecture for the FFT. In Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal
Processing, volume 3, pages 1381–1384, Seattle, WA, May
1998.

[26] A. Monsifrot, F. Bodin, and R. Quiniou. A machine learning
approach to automatic production of compiler heuristics. In
Proceedings of the International Conference on Artificial
Intelligence: Methodology, Systems, Applications, LNCS
2443, pages 41–50, 2002.

[27] S.S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, 1997.

[28] Z. Pan and R. Eigenmann. Fast and effective orchestration of
compiler optimizations for automatic performance tuning. In
Proceedings of the International Symposium on Code
Generation and Optimization (CGO), pages 319–332, 2006.

[29] David Parello, Olivier Temam, Albert Cohen, and
Jean-Marie Verdun. Towards a systematic, pragmatic and
architecture-aware program optimization process for
complex processors. In ACM/IEEE Conf. on Supercomputing
(SC’04), page 15, Washington, DC, 2004.

[30] B. Singer and M. Veloso. Learning to predict performance
from formula modeling and training data. In Proceedings of
the Conference on Machine Learning, 2000.

[31] M. Stephenson and S. Amarasinghe. Predicting unroll factors
using supervised classification. In Proceedings of
International Symposium on Code Generation and
Optimization (CGO), pages 123–134, 2005.

[32] S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D.I.
August. Compiler optimization-space exploration. In
Proceedings of the International Symposium on Code
Generation and Optimization (CGO), pages 204–215, 2003.

[33] J. D. Ullman. Principles of Database and Knowledge
Systems, volume 1. Computer Science Press, 1988.

[34] J. Whaley and M.S. Lam. Cloning based context sensitive
pointer alias analysis using binary decision diagrams. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
2004.

[35] R. Whaley and J. Dongarra. Automatically tuned linear
algebra software. In Proceedings of the Conference on High
Performance Networking and Computing, 1998.

[36] D. Whitfield and M. L. Soffa. An approach to ordering
optimizing transformations. In ACM Symp. on Principles &
practice of parallel programming (PPoPP’90), pages
137–146, Seattle, Washington, United States, 1990.


