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Abstract: Modern compilers have limited ability to exploit the performance improve-
ment potential of complex transformation compositions. This is due to the ad-hoc na-
ture of different transformations. Various frameworks have been proposed to provide
a unified representation of different transformations, among them is Pugh’s Unified
Transformation Framework (UTF) (Kelly and Pugh (1993)). It presents a unified and
systematic representation of iteration reordering transformations and their arbitrary
combination, which results in a large and complex optimisation space for a compiler to
explore. This paper presents a heuristic search algorithm capable of efficiently locating
good program optimisations within such a space. Preliminary experimental results on
Java show that it can achieve an average speedup of 1.14 on Linux+Celeron and 1.10
on Windows+PentiumPro, and more than 75% of the maximum performance available
can be obtained within 20 evaluations or less.
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1 Introduction

The demand for greater performance has led to an expo-

∗A preliminary version of this paper, titled ”A heuristic search
algorithm based on Unified Transformation Framework”, has been
presented in the 7th International Workshop on High Performance
Scientific and Engineering Computing (ICPP-HPSEC 2005), Norway,
2005

nential growth in hardware performance and architecture
evolution. In order to fully exploit the hardware poten-
tial in search for high performance, an optimising com-
piler (Kennedy and Allen (2002)) usually applies various
transformations at different levels. Previous work (Parello
et al. (2002)) demonstrates that complex transformation
compositions can bring significant performance improve-
ment. However, traditional optimising compilers are based
on static analysis and a hardwired compilation strategy.
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They have difficulties in coping with this complexity of
transformation combination, which usually appears in the
form of a large and complex optimisation space. Itera-
tive optimisation (Bodin et al. (1998), Kisuki et al. (1999),
Fursin et al. (2002), Fursin (2004)) is therefore introduced
to explore such spaces. However, many current iterative
optimisation approaches either target kernels or consider
only a small set of transformations, therefore difficult to
extend and perform long sequences of composed transfor-
mations.

A unified representation (Bastoul et al. (2003)) of vari-
ous transformations allows the compiler to explore an op-
timisation space in a systematic manner. Various repre-
sentations have been purposed, among them is the Uni-
fied Transformation Framework (UTF) (Kelly and Pugh
(1993)). It presents a unified and systematic representa-
tion of iteration reordering transformations and their ar-
bitrary combinations, which aim to improve memory lo-
cality and explore parallelism. This results in a large and
complex optimisation space for a compiler to explore, as
demonstrated later.

Java’s architecture independent design makes it ideal
for software development in a modern computing environ-
ment. However, this means that Java is frequently un-
able to deliver high performance. Many approaches (Adl-
Tabatabai et al. (1998), Alpern et al. (1999), Bik and Gan-
non (1997), Moreira et al. (1998)) have been proposed to
improve Java’s runtime performance. In Long and O’Boyle
(2001), we show the performance improvement available
for loop reordering transformations on Java programs.

This paper presents a heuristic search algorithm to ex-
plore the UTF-based optimisation space. The experimen-
tal results on Java show that this algorithm is able to locate
good points in a remarkably small number of attempts.
However, when optimizing large programs, the cost of the
iterative search can still be high and therefore, such pro-
grams should be profiled first to focus the search on their
hotspots only. To further lower the search cost, we discuss
the potential of using machine learning techniques and sug-
gest to use our heuristic search algorithm to select training
examples in large optimization spaces.

The outline of this paper is as follows. Section 2 speci-
fies the optimisation space with the help of the UTF. The
heuristic search algorithm and its experimental results are
presented in section 3. Section 4 discusses related work.
Section 5 briefly discusses the potential of using this al-
gorithm to select good training examples for an instance-
based learning optimisation approach. It is followed by
some concluding remarks in section

2 The Problem

We wish to search a large program transformation space
and develop a search algorithm which can find the trans-
formation sequence(s) that give the best performance im-
provement with the fewest number of evaluations. The
critical issues are: what transformation space are we to

consider and how is it to be represented? It must be sig-
nificant and large enough to contain useful minima points
and have a representation that allows a systematic search.
Previous work (Bodin et al. (1998), Fursin et al. (2002))
has focused on search strategies based on highly restricted
optimisation spaces.

The Unified Transformation Framework (UTF) (Kelly
and Pugh (1993)) provides a uniform and systematic rep-
resentation of iteration reordering transformations (loop
interchange, reversal, skewing, distribution, fusion, align-
ment, interleaving, tiling, coalescing, scaling, together with
statement reordering and index set splitting) and their ar-
bitrary combinations. It encompasses nearly all the high
level loop and array based transformations found in the
literature and state-of-the-art commercial compilers.

A transformation is considered by UTF as a schedule
mapping the old iteration space to the new one. For each
statement in an n-nested loop, its mapping has n loop
components (quasi-affine functions of iteration variables)
in odd-numbered levels, and n+1 syntactic components
(integer constants) in even-numbered levels. An example
is shown in Figure 1 where the original double nested loop
and its default schedule (T0 and T1) are shown in A). When
loop interchange is applied, i and j in both T0 and T1 in
A) are swapped to denote the interchange, as shown in
B). If distribution is then applied, the 0 and 1 in the last
and 5th column of T0 and T1 in B) are moved to the 3rd
column, as shown in C). If skewing on statement 1 is then
applied, the i in T1 in C) is changed to i+j, as shown in
D).

It is worth noting that no UTF transformations, except
tiling, changes a mapping’s length if applied. For example,
the mappings of program B, C and D are of the same length
as those of the original program A, as shown in Figure 1.
In addition, only unrolling duplicates the loop body when
applied, which introduces more coefficients to the schedule.

Figure 1 shows that, using the schedule notation, UTF
can represent a sequence of iteration reordering trans-
formations as a sequence of parameters (integers in the
syntactic components and coefficients in the loop compo-
nents). In this manner, the optimisation space composed of
arbitrary combinations of these transformations is turned
into a polyhedral space composed of all the integer param-
eters in the loop and syntactic components. This polyhe-
dral space is considered more convenient for a systematic
exploration than the original one.

A compiler has to explore this polyhedral space for per-
formance improvement. This space is large, considering its
dimension (the number of parameters) and the potential
range of each dimension. For example, if the tile sizes are
allowed to vary from 1 to 10, unrolling factors from 1 to
20, the integer coefficients from -5 to 5, there are over 1010

points to consider for the original loop in Figure 1. Long
(2004) presents an exhaustive scan algorithm which can
reach every single point within this space, if given enough
time and resources. However, as the space contains many
points either illegal or degrade performance, it is clear that
any realistic search algorithm will have to focus on areas
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A) original program
for (int i=0; i<1024; i++)

for (int j=0; j<2048; j++) {
0: b[i][j] = c[i] + d[j];
1: a[i][j] = c[j] + d[j];
}

T0: [i, j] → [0, i, 0, j, 0]
T1: [i, j] → [0, i, 0, j, 1]
B) interchange is applied
for (int j=0; j<2048; j++)

for (int i=0; i<1024; i++) {
0: b[i][j] = c[i] + d[j];
1: a[i][j] = c[j] + d[j];
}

T0: [i, j] → [0, j, 0, i, 0]
T1: [i, j] → [0, j, 0, i, 1]
C) distribution is applied
for (int j=0; j<2048; j++) {

for (int i=0; i<1024; i++) {
0: b[i][j] = c[i] + d[j]; }

for (int i=0; i<1024; i++) {
1: a[i][j] = c[j] + d[j]; }

}
T0: [i, j] → [0, j, 0, i, 0]
T1: [i, j] → [0, j, 1, i, 0]
D) skewing is applied
for (int j=0; j<2048; j++) {

for (int i=0; i<1024; i++) {
0: b[i][j] = c[i] + d[j]; }

for (int i=j; i<j+1024; i++) {
1: a[i-j][j] = c[j] + d[j]; }

}
T0: [i, j] → [0, j, 0, i, 0]
T1: [i, j] → [0, j, 1, i+j, 0]

Figure 1: Loop transformations and resulting codes

where legal points aggregate, and if possible, where points
of performance improvements aggregate.

Such an optimisation space is not only large but also
complex. Kisuki et al. (1999) demonstrate that even with
only two transformations in tiling and unrolling, the result-
ing subspace is highly non-linear and contains many local
minima as well as some discontinuities. It is infeasible to
analyse or predict the performance and to pick good points
from the space using static approaches. A reasonable al-
ternative is a search algorithm which uses its prior results
and heuristics to direct its search, in order to locate good
points quickly.

3 Heuristic Search

Due to the size of the above optimisation space, it is
essential to develop an efficient search algorithm. To be
portable, this algorithm should not contain any hardwired

knowledge about the architecture and environment. As
there is no prior knowledge about where the good points lo-
cate in the space, it should theoretically consider all points
in the space if given unlimited time and resources, although
practically this is infeasible and unnecessary. Therefore,
the search algorithm has to make a tradeoff between effi-
ciency and coverage. In order to find good points in the
space quickly, the algorithm should direct its search based
on runtime feedback.

Furthermore, a compiler can use appropriate machine
learning techniques to accumulate optimisation experience
from these good transformations. Later when a new pro-
gram is encountered, the compiler can apply its experience
to find good transformation without any iterative search.
This approach will be discussed in section 4.

3.1 Additional notation

The loop and syntactic components of a mapping are
grouped into two vectors named loop vector and syntactic
vector respectively. The syntactic vector SV is a vector
of integer constants. Loop vector LV is a vector of linear
functions of all the original iteration variables or derived
ones introduced by tiling, namely i0, i1, ... ix. Intuitively,
varieties in loop vectors are associated with transforma-
tions such as tiling, unrolling, skewing, reversal, alignment,
and scaling etc., and varieties of syntactic vectors are asso-
ciated with transformations such as loop fusion, distribu-
tion and statement reordering, etc.. For instance, in Figure
1, when loops i and j in A) are interchanged, the syntac-
tic vectors ((0,0,0) and (0,0,1)) remain unchanged whilst
the loop vectors change from (i,j) to (j,i), as shown in B).
When the loop is then distributed, the syntactic vectors
are changed to (0,0,0) and (0,1,0), as shown in C), whilst
the loop vectors (j,i) remain unchanged.

Loop vector LV is presented as LV =I×M where I is an
(x+2)-dimensional vector of the iteration variables and M
an (x+2)×(x+1) matrix of integer constants. For exam-
ple, the mappings of D) in Figure 1 can be represented as
follows.

T0 : LV0 = (j, i) = (i, j, 1)×



0 1
1 0
0 0


 , SV0 = (0, 0, 0)

(1)

T1 : LV1 = (j, i+j) = (i, j, 1)×



0 1
1 1
0 0


 , SV1 = (0, 1, 0)

(2)
Given a loop vector LV, its default schedule transforms

the code block in a way that all the statements in the
loop(s) remain in their original positions. Intuitively, this
means that transformations such as statement reordering,
loop distribution and fusion are not considered in the de-
fault schedule.
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3.2 Search Strategy

In order to find good points in the above optimisation space
quickly, the heuristic search algorithm uses the following
search strategies:

2-phase mapping construction Using the above nota-
tions, mapping construction can be considered as a
two phase process. In the first phase, the iteration
variable vector I and the matrix M are decided and
the loop vector LV is then obtained by LV =I×M.
The second phase decides the syntactic vector SV. The
mapping is then constructed by interleaving the ele-
ments of SV and LV.

UTF requires that each statement in the loop be as-
signed a separate mapping. Theoretically, their map-
pings do not necessarily share a common loop vector
as in the default schedule case discussed above. In
such cases, for the mapping of each statement, its loop
vector must be decided separately, before its syntactic
vector.

Random When there is no prior knowledge of the search
space, random points are realistic starting points for
the search algorithm. The search process over time is
biased on weights to options found to be good in the
previous attempts. For example, a random decision is
made in each attempt on whether loop tiling should
be included.

Runtime feedback (speedup in our case) is used to pe-
riodically review the decision bias during the search
process. In each review, the weight of each option
may be given a small increment if performance im-
provement is found, or a small decrement if degrada-
tion is found or when illegal schedule is constructed.
In addition, these weights will be reset to default after
a much longer period, in order to balance the tradeoff
between efficiency and coverage.

Rotation The separation of loop and syntactic compo-
nents divides the target search space into two sub-
spaces associated with the loop and syntactic vectors,
which are explored by L-Search and S-Search respec-
tively. The L-Search focuses on loop vector subspace
exploration. By default, it generates various loop vec-
tors, and tests their default schedules. The S-Search
explores the syntactic vector subspace. By default, it
picks out a good loop vector and tests various sched-
ules constructed by combining the loop vector with
various syntactic vectors.

Since the L-Search and S-Search focus on different as-
pects of mapping construction, neither of them shall
take sole control of the search process permanently.
They are explored in roughly alternating manner. In
each round, L-Search or S-Search evaluates a number
of points in the space and collects the runtime profile,
before relinquishing the control.

Simple first Although Parello et al. (2002) claim that
complex transformation combinations can bring sig-
nificant performance improvement, if we focus on the
iteration reordering transformations UTF includes, we
find that in most cases in Java, the majority of per-
formance improvement comes from either one trans-
formation or a combination of only a few (Long and
O’Boyle (2001)). Therefore, the heuristic search al-
gorithm should try simple schedules first. If no sig-
nificant performance improvement is achieved, it will
then consider complex schedules which may bring fur-
ther improvement, as Parello et al. (2002) indicate.
This search will continue and any arbitrary complex
schedule UTF can represent will therefore be consid-
ered, as long as budget allows.

Intuitively, this strategy means that shorter and sim-
pler transformation sequences are preferred to longer
and more complex ones. For instance, it is known that
tiling could be applied once or repeatedly, as UTF al-
lows. The search algorithm shall consider cases where
no tiling is applied or where tiling is applied only once
before considering those of multiple tiling.

Loop before syntactic The loop vector variety is asso-
ciated with transformations such as tiling, unrolling,
skewing, reversal, alignment and scaling etc. Their
arbitrary combinations indicate more varieties than
those of transformations associated with syntactic vec-
tor subspace, i.e. fusion, distribution and statement
reordering, etc. Therefore, the algorithm attempts to
decide the loop vector first before considering the va-
riety of syntactic vectors.

Window search The search algorithm should be flexi-
ble enough so that, if a good point is found, it will
explore the surrounding subspace where even better
points may reside. This strategy is very similar to
the grid-based search algorithm used in Kisuki et al.
(1999). It is worth noting that a balance shall be
maintained between flexibility, efficiency and cover-
age, so that when no further improvement is found in
the subspace, the search algorithm will turn to other
areas within the optimisation space.

3.3 Search Algorithm

During the search process, both the L-Search and S-Search
are explored in roughly alternating manner. In each round,
L-Search or S-Search evaluates a number of points in the
space and collects the runtime profile. This is coordinated
by a steering module which keeps adjusting its decision ac-
cording to runtime profile, as the pseudo code in Figure 2
demonstrates. Budget, Lbudget and Sbudget are compiler
configuration constants. In the prototype, Budget is the
number of iteration the heuristic search plans to take be-
fore stop. It is set 100 as explained later in Experimental
Results.

4



HeuristicSearch(...) {
try and evaluate the 1st round of L-Search;
try and evaluate the 1st round of S-Search;

// while optimisation budget (Budget) allows
repeat
{ decide next search round;

// based on evaluation results
if (decision is "try L-Search")

{ try and evaluate L-Search; }
else // the decision is "try S-Search"

{ try and evaluate S-Search; }
}

}
L-Search(...) {

// for a certain number of times (Lbudget)
repeat
{ decide iteration variable vector I;

decide transform matrix M;
create a new loop vector LV=IxM;
evaluate LV’s default schedule S;

}
}
S-Search(...) {

choose a good schedule S;
derive its loop vector LV;
derive its syntactic matrix SM;
// for a certain number of times (Sbudget)
repeat
{ derive new syntactic matrix SM’ from SM;

construct new schedule S’ from LV and SM’;
evaluate S’;

}
}

Figure 2: Pseudo code of the heuristic search algorithm

L-Search The initial L-Search generates a certain num-
ber (Lbudget in Figure 2) of loop vectors and evalu-
ates them using their default schedules. As described
above, loop vector LV is determined by the itera-
tion variable vector I and transform matrix M. I is
in turn decided by tile size(s) and unrolling factor(s)
randomly chosen from a suitable range, if tiling and/or
unrolling is included.

Loop tiling is the only transformation that introduces
derived iteration variables, with one new variable in-
troduced by applying tiling to one loop once. Most
compiler apply tiling just once. However, in the pres-
ence of a multi-level cache hierarchy, performance can
be further improved if tiling is applied repeatedly.
Therefore, for each loop in a loop nest, tile depth (the
number of times tiling can be applied) is an arbitrary
integer within a certain range, depending on the tile
size(s) chosen and the original loop size(s). Random
decisions are made on tile depth, favouring simple ones

such as 1 (no tiling is applied) or 2 (tiling is applied
once).

Loop unrolling is a transformation that duplicates
the number of mappings for each statement via in-
dex splitting. Theoretically, all of the loops in the
loop nest are considered potential candidates for un-
rolling. If it is included, the search algorithm must
decide how many loops to unroll, which of them to
unroll and the corresponding unroll factors. Follow-
ing the ”simple first” strategy, it will first consider
unrolling only the innermost loop in the loop nest be-
fore considering unrolling other loops and more than
one loops. The unrolling factor(s) will be chosen ran-
domly from a certain range.

In order to follow the ”simple first” strategy, it is
preferable that simple transformation matrices are
generated before complex ones. We consider a ma-
trix M = (ma)T simple if m is an identity matrix or a
matrix that can be obtained by applying one or a few
steps of linear transformations on an identity matrix.
Therefore, the transform matrix M is constructed by
starting from an MT =(m a) (where m is an identity
matrix and a a zero vector), iteratively applying either
linear transformations to m or assigning new value to
a (both randomly decided) until a new one is gen-
erated. The loop vector LV is then constructed by
multiplying I and M, as demonstrated in Equation
(1) and (2).

In order to generate the default schedule of LV, each
statement in the loop nest must be assigned a sepa-
rate syntactic vector. This is done by constructing a
default syntactic matrix SM, each row of which stands
for a syntactic vector for a statement. For example,
for loop vector LV = (j,i) in Figure 1(B), its default
syntactic matrix is as shown in Equation (3).

SM =
(

0 0 0
0 0 1

)
(3)

With both loop and syntactic vectors decided, LV’s
default schedule is constructed by allocating different
syntactic vectors in SM to different statements in the
original loop. Details of the algorithms to generate
the default syntactic matrix and the default sched-
ule can be found in Long (2004). This default sched-
ule of LV is then tested for legality before the corre-
sponding code being generated and tested. The profile
(speedup) is collected and used to adjust the decision
bias as explained above. This process is repeated for
(Lbudget) times in each L-Search round.

Subsequently, the L-Search selects loop vectors of
good performance found in previous rounds, con-
structs similar ones by keeping the I unchanged and
combining it with different M s generated in the same
manner presented above. The resulting similar loop
vectors are also tested using their default schedules,
with the results used to adjust the decision bias.
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S-Search The S-Search aims to explore the syntactic vec-
tor subspace. Initially, it chooses from prior profile a
loop vector I whose default schedule brings good per-
formance improvement. The syntactic matrix SM of
the schedule which brings LV its best performance im-
provement is divided into submatrices, each of which
contains several successive rows. The S-Search ran-
domly picks one submatrix and modifies it with two
basic operations. The first one is hoisting, which swap
values between two randomly chosen columns (source
and target) within the chosen submatrix. The other
one is reordering, which randomly assigns new values
to a randomly selected column in the chosen subma-
trix. Random decisions are made on how to divide
the matrix, which submatrix or matrices to modify
and other operation parameters, favouring simple de-
cisions such as dividing the matrix evenly into 2 or
3 submatrices. These steps are repeated until a new
matrix SM’ is found. Details of this syntactic matrix
generation algorithm can be found in Long (2004).

SM’ is then combined with I and the resulting sched-
ule S’ will be tested. This process is repeated for
Sbudget times in each round of S-Search.

Subsequently, the S-Search algorithm chooses different
loop vectors for each statement in the original loop,
and then constructs syntactic vectors for each loop
vector separately.

Legality and Duplicity UTF provides a legality test
(Kelly and Pugh (1993)) for all generated schedules.
The steering module stores all schedules generated
during the search process in order to prevent dupli-
cate visits. Matrices and vectors generated during the
search process are stored accordingly. They are used
to check whether the newly generated matrix and vec-
tor have been tried before. If so, they are simply aban-
doned.

It is worth noting that the heuristic search algorithm
reassesses the weights of all the options it uses to make
random decisions periodically, i.e. at the end of each
L-Search and S-Search round. These weights are given
various increments and decrements, based on both the
latest profile collected and those collected before. This
not only biases the search to the ”more promising” di-
rections, but also helps to turn the exploration back
to ”less promising” directions when the ”more promis-
ing” directions have been thoroughly expored. This
enables the search algorithm to follow the ”window
search” strategy and tradeoff between efficiency and
coverage.

Furthermore, the steering module configures the
search before it starts. It sets as constants the val-
ues of Budget, Lbudget, Sbudget, range of tile size
and unrolling factors to consider, and all remaining
default options.

A comprehensive description of the algorithm can be
found in Long (2004).

Program From
kernel3 Livermore
kernel5 Livermore
kernel6 Livermore
kernel7 Livermore
kernel8 Livermore
kernel9 Livermore
kernel10 Livermore
kernel11 Livermore
kernel12 Livermore
kernel19 Livermore
doIteration JGF::euler::doIteration(...)
runF JGF::euler::calcutateF(..)
runG JGF::euler::calculateG(..)
runR JGF::euler::calcutateR(..)
runS JGF::euler::calculateStateVar(..)
mm 300x300 matrix multiplication,

also kernel21 of Livermore

Figure 3: Summary of Benchmarks Used

3.4 Experimental Results

To the best of our knowledge, no Java compiler currently
available provides the UTF transformations considered in
this paper. There is no published work (except Long and
O’Boyle (2001)) about the potential of these transforma-
tions on Java optimisation. Therefore, no direct compar-
ison can be made between the heuristic search algorithm
and the others. Instead, we give absolute performance im-
provement and evaluate how quickly good points are found.

In order to evaluate the search algorithm, we develop an
Adaptive Optimisation Framework for Java (AOF-Java),
which is a source-to-source Java restructurer using iter-
ative optimisation. It interprets the UTF schedules into
transformation sequences and applies them to the target
program. The program will then be executed, with execu-
tion time recorded.

The experiments were conducted within two environ-
ments, one is Java 2 Runtime Environment with Java
Hotspot Client VM (1.3.0) running on RedHat Linux 6.3
in Intel Celeron (533MHz) with 128M RAM. The other is
Java 2 Runtime Environment with Java Hotspot Client
VM (1.4.1.1 01) running on MS-Windows 2000 in Pen-
tiumPro (200MHz) with 96M RAM.

Sixteen code segments were chosen from two widely-used
benchmark suites, namely Java Grande Forum Benchmark
Suite (JGF) (Bull et al. (2000)) and Livermore (Livermore
benchmark). They are summarised in Figure 3. For each
benchmark, the algorithm evaluated the first 100 (Budget
in Figure 2) legal points it reached in the corresponding
optimisation space. This search process takes about 20 to
50 minutes, depending on the benchmarks.

As the heuristic search algorithm may explore the poly-
hedral space via different directions in different search
runs, this experiment is repeated 10 times in order to en-
sure the results are not achieved by coincidence. In ad-
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Code Speedup
after 100 after 20 Percentage

kernel3 1.09 1.05 56%
kernel5 1.14 1.11 79%
kernel6 1.17 1.13 76%
kernel7 1.06 1.06 99%
kernel8 1.29 1.29 99%
kernel9 1.21 1.09 43%
kernel10 1.13 1.13 92%
kernel11 1.45 1.40 89%
kernel12 1.08 1.06 75%
kernel19 1.07 1.06 86%
runF 1.07 1.06 86%
runG 1.09 1.09 99%
runR 1.09 1.07 78%
runS 1.02 1.00 18%
mm 1.21 1.20 95%
doIteration 1.06 1.04 67%
Average 1.14 1.12 78%

Figure 4: Summary of results in Linux+Celeron

dition, it minimises the impact of noise caused by factors
such as the virtual machine.

3.4.1 Linux+Celeron

Figure 4 demonstrates that the heuristic search algorithm
improves the performance of all of these benchmarks in
Linux+Celeron. It achieves an average speedup of 1.14,
and this achievement can be obtained quickly.

The best improvements found within the first 20 and
100 evaluations are presented in the table. They show
that, on all benchmarks except kernel3, kernel9, doItera-
tion and runS, the algorithm needs only about 20 evalua-
tions to achieve most of the speedup achieved within 100
evaluations. In the case of kernel9, it takes more than 60
attempts. The Percentage column shows that, on average,
78% of the speedup can be obtained within 20 evaluations.

To examine how the algorithm behaves during the
search, consider the diagram in Figure 5(a) which shows
the execution time of kernel6 against the number of eval-
uations during one iterative search on kernel6. It shows
large variation in performance caused by different trans-
formations, which demonstrates the complexity of the op-
timisation space considered in this paper.

The best execution time found so far in each search run
are obtained for all 10 runs. The average of these achieve-
ments are plotted against the number of evaluations in
Figure 5(b). This demonstrates that although the optimi-
sation space is complex, the heuristic search algorithm can
find good points in it quickly. In addition, the standard
deviations of these achievements are low, as the error bars
in Figure 5(b) indicate. This shows that although these 10
runs explore the space in different direction, they achieve
similar results on kernel6.

The search results show that most of the legal points
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Figure 5: Heuristic search in Linux+Celeron

reached by the search algorithm use short and simple trans-
formations, for instance, tiling only. To a certain extent,
this justifies the ”simple first” strategy of the algorithm.
On the other hand, this is partly due to the fact that
the relatively simple nature of these benchmarks restrains
the applicability of more complex transformation combi-
nations. The heuristic search algorithm biases its search
toward simple transformations accordingly, which demon-
strates its adaptability to the program it is to optimise.

3.4.2 Windows+PentiumPro

The experimental results in Windows+PentiumPro are
summarised in Figure 6. They demonstrate that the
heuristic search algorithm can also bring performance im-
provement to many of these benchmarks in this environ-
ment. It achieves an average speedup of 1.10 and 89% of
the speedup can be obtained within 20 evaluations.

The search algorithm finds, within the first 20 evalua-
tions, most of the speedup achieved within 100 evaluations
for kernel7, kernel8, kernel9, kernel11, kernel12, kernel19,
runF, runR and mm. The negligible standard deviations
(shown the error bars in Figure 7(b)) show that all 10
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Code Speedup
after 100 after 20 Percentage

kernel3 1.18 1.14 78%
kernel5 1.10 1.07 70%
kernel6 1.09 1.07 78%
kernel7 1.05 1.05 99%
kernel8 1.14 1.14 99%
kernel9 1.37 1.36 97%
kernel10 1.06 1.05 83%
kernel11 1.18 1.17 94%
kernel12 1.19 1.19 99%
kernel19 1.01 1.01 99%
runF 1.02 1.02 99%
runG 1.01 1.00 81%
runR 1.09 1.09 99%
runS 1.01 1.00 75%
mm 1.14 1.13 93%
doIteration 1.05 1.04 80%
Average 1.10 1.09 89%

Figure 6: Summary of results in Windows+PentiumPro

searches on kernel9 achieve similar performance improve-
ments. The search algorithm achieves very similar results
on other benchmarks.

The search results show that some programs are less
sensitive to the transformations in Windows+PentiumPro.
Figure 7(a) demonstrates one search on kernel9. The curve
shows the execution time against the number of evalua-
tions during one search on kernel9. This indicates that,
regardless of the transformations applied, its performance
is almost invariant. To find out whether this is just a co-
incidence, we derive the best execution time found so far
during each of the 10 search runs, and plot the average of
these achievements against the number of evaluations. The
result is shown in Figure 7(b). The error bars show that
the standard deviations of these 10 search runs are low, i.e.
they all achieve similar results on kernel9. Similar char-
acteristic is also found on kernel11 and kernel12, whilst
the others’ curves are still highly irregular and sensitive to
transformations applied, like in Figure 5(a).

It is worth noting that the achievement in this environ-
ment is less significant than that in the Linux+Celeron
environment. This may be due to the fact that the small
L2 cache of Celeron makes the relative cost of memory la-
tency on Linux+Celeron greater, and therefore it benefits
more from cache restructuring-based transformations.

3.4.3 Summary

The above results demonstrate that the algorithm is ca-
pable of achieving Java performance improvement in both
environments. On the 16 benchmarks, it achieves an av-
erage speedup of 1.14 in Linux+Celeron and 1.10 in Win-
dows+PentiumPro. In addition, the algorithm achieves
this improvement quickly. Within 20 evaluations, 78% of
its achievement in Linux+Celeron can be obtained, and
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Figure 7: Heuristic search in Windows+PentiumPro

89% of that can be obtained in Windows+PentiumPro.
On average, it takes less than 5 seconds to find a legal
point during the search process, and the vast majority of
search time is actually spent on evaluation of these points.
This justifies the strategies used by this heuristic search
algorithm.

4 Related Work

Bastoul et al. (2003) and Cohen et al. (2004) specify an
optimisation space in a manner similar to UTF. It con-
siders a static control part (SCoP) as a maximum set of
consecutive statements without while loops, and a program
transformation on this SCoP may cause modification in its
iteration domain, or its iteration schedule, or its memory
access function. A polyhedron is used to represent this
modification, and a set of primitives are used to modify
the polyhedron. This results in a larger optimisation space
than UTF can represent. However, no approach is given
to explore it for performance improvements.

There have been some work in iterative optimisation.
Kisuki et al. (1999) optimise a few kernels by repeatedly

8



execute different versions of them and using the feedback
to decide further optimisation. Fursin et al. (2002) and
Fursin (2004) extend the iterative search for good points
within optimisation space to larger applications. It in-
troduces several search strategies to speedup the explo-
ration. However, only a few parameterised transforma-
tions (tiling, unrolling and array padding) are considered
in various fixed phased orders. Therefore, the optimisation
spaces are quite small and regular-shaped, and the search
algorithm is difficult to extend and perform long sequences
of composed transformations.

Franke et al. (2005) propose a probabilistic feedback-
driven search algorithm in search for good transforma-
tion sequence in a large optimisation space consisting of
81 source-level transformations. It combines two search
approaches, namely random search and localised search
within a good area, and chooses the best of them at the
final merge stage. This is very similar to the random and
window search strategies our heuristic search algorithm
uses to tradeoff efficiency and coverage.

Kelly and Pugh (1993a) and Nisbet (2001) consider
search in a large UTF-based space. The algorithm of Kelly
and Pugh (1993a) constructs the mapping for each state-
ment in a level by level manner. At each level, an estimate
is made on the partly specified mapping, which is then
augmented if and only if the estimate is good. The main
drawback of this algorithm is that no runtime feedback
can be used to bias the mapping construction, as no code
can be generated from a mapping only partly constructed.
Nisbet (2001) uses genetic algorithm to optimise programs
for parallel architectures. However, the efficiency of ge-
netic algorithm is poor (it takes several hours to find a
good transformation within the space).

Cooper et al. (2004) use a biased random search algo-
rithm to explore a large space consisting of a pool of data-
flow transformations. Its efficiency remains unknown. The
phase order problem it aims to solve is relatively simple
compared to what this and the above papers consider.
OSE (Triantafyllis et al. (2003)) considers an optimisa-
tion space composed of various compilations and configu-
rations. It uses compiler writer’s prior experience to prune
many points before a breadth first tree search starts. Ex-
perimental results show that OSE can yield significant per-
formance improvement. Pinkers et al. (2004) present an
approach to turn on or off compiler options in order to
find the optimal set of them. It uses orthogonal arrays in
statistical profile analysis to calculate the main efforts of
these options.

Java optimisations (Shirazi (2002)) are achieved via an
efficient virtual machine (Alpern et al. (1999)), or optimi-
sation techniques such as JIT compilation (Adl-Tabatabai
et al. (1998)) and parallelisation (Bik and Gannon (1997)).
The virtual machine approach is inevitably architecture-
specific, JIT compilation considers only light-weighted op-
timisations, whilst parallelisation relies on architecture
support. Moreira et al. (1998) provide a package support-
ing true multi-dimensional arrays needed in high perfor-
mance computing. But it is not sufficiently flexible to al-

low creation of arrays of arbitrary classes and of arbitrary
dimension.

5 Discussion

Although experimental results show that the proposed
heuristic search algorithm can quickly find good transfor-
mations in the large UTF-based optimisation space, the
iterative search cost may still be unacceptable in some
circumstances. Furthermore, because UTF focuses on
loop reordering transformations, this search algorithm op-
timises codes at loop level. It is expensive to apply it to a
large application containing many loops, as each loop has
to be optimised respectively. Therefore, we profile the ap-
plication, find its runtime hotspots and then use the search
algorithm to optimise those loops within the hotspots.

We consider to speed up the iterative search by using
dynamic versioning techniques (Fursin et al. (2005)) and
by applying machine learning techiques (Mitchell (1997))
to further narrow down the optimization space. We are
enhancing AOF-Java with an instance-based learning op-
timisation approach (Long and O’Boyle (2004)), and train
it with the good points found by the above heuristic search
algorithm. Preliminary experimental results show that af-
ter training, it can, within just one attempt, achieve on av-
erage over 70% of the best performance improvement found
by the search algorithm after 100 evaluations. Therefore,
our search algorithm can be useful for the selection of train-
ing examples in large optimization spaces.

6 Conclusion and future work

This paper uses UTF to specify a large and complex op-
timisation space of iteration reordering transformations. It
presents a heuristic random search algorithm independent
of architecture, language and environment, as no such in-
formation is hardwired in the algorithm. The experimental
results show that this algorithm is capable of locating good
points within this space quickly. This demonstrates that,
by better exploring the potential of high-order transforma-
tions, it is possible to make Java a more realistic option
for portable high performance computing. Furthermore,
we suggest using this heuristic search algorithm to select
training examples for a machine learning-based optimisa-
tion approach.

Future work will further explore the potential of machine
learning techniques for program optimisation, consider lan-
guages other than Java, and investigate optimisations out-
side the UTF framework.
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