
Split Compilation: an Application to Just-in-Time Vectorization

Piotr Lesnicki Albert Cohen
Grigori Fursin

INRIA Futurs and LRI, Paris-Sud 11 University
fistname.lastname@inria.fr

Marco Cornero Andrea Ornstein
Erven Rohou

STMicroelectronics
firstname.lastname@st.com

Abstract
In a world of ubiquitous, heterogeneous parallelism, achieving
portable performance is a challenge. It requires finely tuned coor-
dination, from the programming language to the hardware, through
the compiler and multiple layers of the run-time system. This doc-
ument presents our work in split compilation and parallelization.
Split compilation relies on automatically generated semantical an-
notations to enrich the intermediate format, decoupling costly of-
fline analyses from lighter, online or just-in-time program transfor-
mations.

Our work focuses on automatic vectorization, a key optimiza-
tion playing an increasing role in modern, power-efficient archi-
tectures. Our research platform uses GCC’s support for the Com-
mon Language Infrastructure (CLI ECMA-335); this choice is mo-
tivated by the unique combination of optimizations and portability
of GCC, through a semantically rich and performance-friendly in-
termediate format. Implementation is still in progress.

Keywords Performance Portability, Vectorization, Bytecode, CLI,
CIL, Annotations

1. Introduction
The design of high-performance architectures is dominated by
performance-per-Watt considerations, in particular in the embed-
ded domain. This trend lends to massively parallel, heterogeneous
processors, where specialized computing resources can be switched
on or off depending on the application. This also lends to wide
platform variability, from the higher to lower end of the market,
and across different application domains (numerical and signa-
processing algorithms). This combined variability and heterogene-
ity challenges the adaptation of increasingly complex software.
Meanwhile, mainstream languages are getting higher level, more
abstract from the hardware and traverse several compilation steps.

In this context, performance portability is dramatically endan-
gered. Just-in-time compilation, bytecode intermediate languages,
and virtual machines have been proposed to tackle with this prob-
lem. The goal is to make the right optimization choice at the proper
compilation/execution stage, bringing together the accuracy of dy-
namic analysis with the performance impact of static code genera-
tion. Preserving semantical information along the multiple compi-
lation and run-time stages is necessary to get the best of this per-
formance deal.

Our goal is to let the intermediate language carry relevant and
generic performance information about parallelism. This allows
to delay the key optimizations until future compilation stages. It
unfortunately emphasizes the lack of generic way to split those
optimizations along compilation stages, preserving semantical in-
formation across intermediate languages. Addressing this specific
challenge led us to the concept of split compilation, where opti-
mization passes are virtually extended across multiple program rep-

resentations and compilation stages, structuring the flow of infor-
mation while preserving (performance) portability.

Our work leverages on the recent extension of GCC to another
virtual execution environment, the Common Language Infrastruc-
ture (CLI ECMA-335), the original execution environment of Mi-
crosoft .NET, also supporting independent and free software devel-
opments.

This extended abstract presents the design of bytecode annota-
tions to pass semantical information from the offline to the just-in-
time (JIT) stages of compilation. These annotations support auto-
matic vectorization, starting from a fully portable bytecode. They
carry information that is either

1. hard to retrieve from the intermediate language, like pointer
aliasing;

2. too costly for the limited time budget of a JIT compiler, like
array dependence analysis;

3. not usable in a target-independent optimization, for plain porta-
bility or performance portability issues, like the selection of
target-specific vector instructions.

The paper is structured as follows. Section 2 presents the mo-
tivations for split compilation, in the context of vector parallelism.
Next we present the baseline GCC infrastructure supporting our
experiments, starting with the GCC vectorizer in Section 3 and
the GCC CLI back-end and front-end in Section 4. Section 5 de-
scribes our approach, followed by some implementation status in
Section 6.

2. Motivation
Portability has driven the definition of compact intermediate repre-
sentations. This, in turn, has triggered advances in Link-Time and
Just-in-Time compilation.

2.1 Why split compilation?
Program optimization combines static and/or dynamic analysis,
pattern matching, code transformation and generation, performance
modeling, and operation research algorithms. Typical optimization
passes entangle these aspects very tightly, sometimes blurring the
difference between them (e.g., analyses for legality or profitabil-
ity). This entanglement is known to bring diminishing returns when
composing compilation passes. It is also a serious source of in-
formation loss, leading to missed optimization opportunities when
running multiple compilation stages.

Split compilation specifically addresses the design of optimiza-
tion algorithms to break this entanglement. It relies on annotations
of the intermediate languages, to virtually extend an optimization
across multiple optimization stages. The big picture is summarized
in Figure 1.

Annotations are a common way to pass additional informa-
tion to the compiler. They are usually expressed in a declarative



bytecode
+

annotationsbytecode
compiler

native compiler
JIT / AOT

asm
source

Split Optimization

dynamic/
link-time 
context

static analysis

Figure 1. Split compilation framework

way (from correctness assertions to compilation or run-time hints),
while preserving the genericity of the language/algorithm.

Our goals by using those language metadata are threefold:

• extended expressiveness of intermediate representation (paral-
lelism);

• facilitate the mapping to specific hardware accelerators;
• abstract the result of an expensive off-line analysis.

In a JIT context, the size and portability of these annotations
are the largest constraints. We are looking for split optimization
designs satisfying two conflicting goals:

• minimize the amount of semantical information flowing across
compilation stages; or minimize the size of this information,
maximizing its density;

• minimize the performance hit due to the delayed analyses and
transformations taking place at run-time;

• maximize the performance benefits to the generated code.

2.2 Related work
In general, annotation-driven compilation uses the extra informa-
tion to hide overheads associated with managed language seman-
tics, to refine the legality constraints for program transformation,
as compilation hints to drive profitability heuristics, or simply to
speedup online passes; see [8, 14, 9] for state-of-the-art Java tech-
niques. Alternatively, Dittamo et al. [6] use manual annotations of
high level programs to enable parallelization of annotated byte-
code.

Link-time optimization [16, 10] and assembly-level optimiza-
tion [1] are common applications of annotation-driven, multi-stage
compilation; in this case, annotations are mostly used to carry miss-
ing static information.

Split compilation goes one step further, virtually extending pro-
gram optimizations across multiple passes, compilation stages and
intermediate languages. This implies revisiting optimization algo-
rithms, to bring the most aggressive optimizations to dynamic code
generators. Unlike compilation-time amortization schemes in clas-

sical JIT optimizers (profile- and profitability-driven), split compi-
lation does not trade compilation time for generated code quality.

In some situations, annotations may appear in the form of scalar
data (legality or profitability hints). Yet, for improved code com-
paction and transformation effectiveness, we also consider more
general forms of metaprogramming. This would be necessary to
support specialization (partial evaluation) and application-specific
code generation; early experiments where conducted with MetaO-
caml [2, 3, 7].

2.3 Two-stage vectorization
Intra-word vector instructions — also called SIMD instructions or
extensions — have become pervasive in modern hardware. They
are widely used in computation-intensive routines relying on hand-
written assembly code or using compiler built-ins.

Auto-vectorization is a technique to select SIMD instructions
through sophisticated static analyses, loop transformations and
pattern-matching. It has made its way to production compilers
[12, 17], although it is sensitive to fragile pattern matching rules at
the moment. It is yet restricted to classical, static compilers, largely
due to the compilation time and infrastructure it requires, and also
due to portability constraints. For these reasons, it appears as an
ideal target for split compilation.

Whereas LLVA proposes to extend bytecode representations to
support intra-word vectors in JIT compilers [15], we do not accept
to lose portability and prefer “how to vectorize” hints. We will
drive vectorizing tranformations in an application- and processor-
independent way, taking advantage of the extensibility of current
intermediate languages through bytecode metadata.

To clearly identify the potential impact of our approach, we pre-
fer to eliminate all overheads associated with managed languages
like Java and C# (dynamic checks and typing, exception-handling,
garbage collection): thanks to the CLI design and the GCC CLI
implementation, we may start from unmanaged C sources. This
choice also helps differentiating split compilation for annotation-
driven overhead removal [14].



0 8 16

Vector layout

Address

Re−alignment

Extraction (strides)

Packing

S1 2

Scalar size

VL

Vector length Vectorization factor VF = VL/S

4 12

Figure 2. Vectorization principles

Beyond methodological motivations, this choice is also driven
by STMicroelectronics’s evaluation of CLI to run computation-
intensive tasks on embedded platforms [5].

Of course, split compilation would also apply to code genera-
tion from higher level languages.

3. The GCC Vectorizer
Vectorization is a loop transformation performed in the GIMPLE-
SSA (Tree-SSA) middle-end of the compiler [11, 12]. It consits
of a static analysis phase, followed (if successful) by the actual
code transformation. It is (currently) applied to innermost loops
with a single basic block, and (currently) focuses on loop-induced
vectorization (rather than block-induced).

Figure 2 summarizes the most important properties associated
with intraword vectorization.

GCC performs several analysis steps to recognize vectorizable
loops:

• it determines the data types to decuce the appropriate vector
types, leading to the inference of the vectorization factor VF
(number of loop iterations used in a vector operation);

• it characterizes access patterns for each memory reference
across loop iterations; this analysis is needed for memory de-
pendences, stride and alignment computation;

• pattern recognition discovers reduction, dot product, and other
specific idioms;

• from array dependence analysis, it determines if some loop-
carried dependences exist, and if so, if the associated depen-
dence distance is lower than VF (pointer aliasing and pointer
arithmetic are treated transparently through prior passes, and
inductive scalar dependences are ignored);

• it builds interleaving groups of instructions (in case of strided
access);

• it builds memory access patterns (simple increments or part of
interleaving group);

• it checks if operations are supported by the target platform.

Then the vectorizer transforms the loop into a vectorized one:

• versioning and peeling the loop for alignment;
• peeling trailing loop iterations for divisibility with the VF;
• top-down scan (definitions before uses), inserting vector state-

ments;

• generate loads/stores for interleaving groups, plus the relevant
data reordering through even/odd extractions and high/low in-
terleaving;

• transform loop bounds, and generate epilogue if the loop was
peeled.

Eventually, GIMPLE vector tree nodes are transformed into
native instructions of the target processor at the RTL level.

4. GCC for the CLI
In June 2006, a project aimed at the development of a back-end pro-
ducing CLI-compliant binaries was born in the GCC community.
One year later, the back-end supports C99 (with a few exceptions);
it already delivers excellent results, both in terms of performance
and code size [4].

4.1 About the Common Language Infrastructure
CLI (Common Language Infrastructure) is a framework that de-
fines a platform independent format for executables and a run-time
environment for the execution of applications. CLI was invented
and it is still best known to be the foundation of Microsoft .NET
framework.

CLI executables are encoded in a Common Intermediate Lan-
guage (CIL), a machine-independent instruction set. This is pos-
sible since CIL is not bound to the instruction set of the machine
on which applications are executed. Since a CLI application does
not contain native code, it is not directly executable. A CLI vir-
tual machine is required in order to run a CLI binary; a wide range
of execution techniques are possible, which include interpretation,
ahead-of-time and just-in-time compilation.

4.2 GCC CLI back-end
Unlike a typical GCC back-end, CLI back-end [5] stops the compi-
lation flow at the end of the middle-end passes and, without going
through any RTL pass, it emits CIL bytecode from GIMPLE repre-
sentation. As a matter of fact, RTL is not a convenient representa-
tion to emit CLI code, while GIMPLE is much more suited for this
purpose.

CIL bytecode is much more high-level than a processor ma-
chine code. For instance, there is no such a concept of registers
or of frame stack; instructions operate on an unbound set of locals
(which closely match the concept of local variables) and on ele-
ments on top of an evaluation stack. In addition, CIL bytecode is
strongly typed and it requires high-level data type information that
is not preserved across RTL.



4.2.1 Target machine model
CLI is seen as a target machine by GCC, its machine description
presents the following properties.

• Languages as C and C++ need to know the size of pointers at
compile time, and cannot defer this choice to CLI initialization
time, so two separate 32 bit and 64 bit targets are defined.

• The CLI back-end deals with unmanaged data like C and C++,
therefore two separate targets are defined where the size of the
pointer is set to 32 (this is cil32 target) or 64 (for cil64).
Natural modes for computations go up to 64 bits.

• In the absence of a packed attribute, alignment rules specify
that natural alignment is always followed. This avoids annota-
tion bloat.

• Properties exclusively needed by RTL passes are skipped. This
is a mere consequence of the CLI back-end operating on GIM-
PLE.

• Though the CLI back-end does not reach RTL passes, there is
a minimum set of RTL-related description that must be present
anyway. For instance, a few instruction selection patterns are
mandatory, while others are used by some heuristics for cost
estimation; there must be a definition of the register sets and a
few peculiar registers have to be defined. As a rule of thumb,
the machine model contains the simplest description for these
properties, even if this makes little sense for CLI target.

Though most GIMPLE tree codes closely match what is repre-
sentable in CIL, some simply do not. Those tree codes could still
be expressed in CIL bytecode by a CIL-emission pass; however,
it would be much more difficult and complicated to perform the
required transformations at CIL emission time (i.e.: those that in-
volve generating new local temporary variables, modifications in
the control-flow graph or in types...), than directly on GIMPLE ex-
pressions.

Pass simpcil is in charge of performing such transformations.
The input is any code in GIMPLE form; the outcome is still valid
GIMPLE, it just contains only constructs for which the CIL emis-
sion is straightforward. Such a constrained GIMPLE format is re-
ferred as ”CIL simplified” GIMPLE throughout this documenta-
tion.

Pass simpcil is performed just once, after leaving SSA form
and immediately before CIL emission.

Transformations performed include expansion of GIMPLE in-
structions (comparisons, bit instructions, conditionals. . . ) and data
(arrays, bit fields, variable initialization, rename for global vari-
ables. . . ) that are not well mapped to CIL.

4.2.2 CIL emission pass
Pass cil receives a CIL-simplified GIMPLE form as input and
produces a CLI assembly file as output. It is the final pass of the
compilation flow.

Before the proper emission, cil currently merges GIMPLE
expressions in the attempt to eliminate local variables.

Aside from obvious translations, GIMPLE pointer nodes are
translated to native ints, and all directly addressed (unmanaged)
data — structure records, unions, enumerates, and especially
arrays — are emitted as valuetypes, i.e., data types with explicit
layout.1

To preserve C semantics which allow pointer arithmetics, ar-
rays are represented by explicitely addressed valuetypes. Perfor-
mance wise it is also important that that we do not use CIL man-

1 Notice such a feature does not exist in Java. It is clearly a disaster in terms
of portability, but was necessary to support C and C++.

aged arrays (garbage collected, with run-time checks) and this was
a key element in the acceptance of CIL bytecode for computation-
intensive embedded applications [5].

This feature also impacts our split compilation framework, as it
clearly separates performance gains associated with the reduction
of array access overhead from the expected vectorization gains. Of
course, split vectorization does not need such unmanaged arrays to
be applicable in general.

4.3 GCC CIL front-end
A CIL front-end, Gcccil [13] has also been implemented. Its first
goal is to accept code generated by the CLI back-end, i.e. coming
from a C source. To support more advanced CLI features such as
reflection or garbage collection it will require a runtime library (like
libgcj).

The GCC front-end for CIL does not implement its own CLR
parser. Instead, it uses Mono to ”parse” the input assembly. That
is, Mono is used to load the assembly and parse the metadata and
types. The front-end only has to parse the actual CIL code of each
method.

CIL basic types (int32, intptr, float . . . ) are translated to
their obvious GCC equivalent. To translate classes and value types,
the GCC RECORD TYPE tree node is used.

Gcccil has also to deal with types with explicit layout and
size as valuetype. Those are particularly important because un-
managed arrays generated by the CIL back-end are part of them.
Gcccil took advantage of the existing support for explicit layout
in ADA, even though it dos not cover all possible definitions. This
is of particular importance for vectorization as the CLI back-end
emits valuetypes for arrays.

Once the types have been parsed, Gcccil parses the CIL code
stream for the methods defined in the assembly in order to build
GCC GENERIC trees for them.

Gcccil cannot compile some methods if they use some unsup-
ported features. In those cases, those methods can be skipped, al-
lowing the user to provide a native implementation if necessary.

5. Design of Split Vectorization
We present here our work in progress in the split vectorizer which
is at a prototype stage. It handles only a few constructs and is
still closely tied to the GCC vectorizer implementation. We discuss
afterwards our ideas to generalize the framework for more target
independance.

5.1 Annotating of CIL intermediate language
CIL bytecode is our intermediate representation and we are using
its metadata facilities to pass partial knowledge about vectorization.

In CIL, metadata are expressed as custom attributes. CIL cus-
tom attributes are structured, meaning they are typed object inher-
iting from the System.Attribute class. Nevertheless, attributes can
be attached to fieds, types and methods, but not directly to code,
meaning CIL instructions themselves or blocks of instructions. An-
notations called modopts can also be attached to method arguments
then modifying the method signature (e.g. with a restrict attribute).

Thus, so far annotations are straightforward structures generated
by the vectorizer analysis and attached to methods. Loops are
identified by the loop number, as identified by GCC’s analysis of
natural loops. Note that in a JIT it requires the analysis of natural
loops. Figure 3 shows a simple exemple of an annotation of a loop
which doesn’t modify the original loop. This loop only requires a
simple strip-mining scheme.

This simple scheme presents several issues :

• low level information on statements of the loop is lost (induc-
tion variables: loop stride to modify)



[vectorizable(loop=1,vector_size=16)]
foo() {
int a;
int x[N],y[N],z[N];
for(i=0; i<N; i++){
z[i] = a*x[i] + y[i]

}
}

Figure 3. simple annotation of a loop

• difficult to cope with more complicated code blocks
• information from the vectorizer is tied to the hardware

The first comes from the grammar of the intermediate repre-
sentation itself: custom attributes cannot be attached to instructions
themselves. A serious problem comes from the vectorization infor-
mation for instructions inside the loops which could possibly have
a different layout after their round trip outside of GCC.

The last issue though is closely linked with the vectorizer in-
frastructure in GCC. In particular, some analyses are tied to the
hardware and have to be performed on the target machine:

• the data types supported on the target, i.e. sizes of the vectors;
• the vectorization factor depends on those types, and the pack-

ing/unpacking scheme;
• the data layout may be unknown, hence the alignment, but

alignment constraints are target-dependent.

Both offline-analyzable and online-analyzable properties have
been listed on Figure 2, except dependence distance information
which is tied to the control flow.

In the case of a JIT compiler, delaying some analyses may
have some advantages: additional dynamic information may help
generate better code, e.g., with respect to data alignment.

Eventually, the difficulty is to reassign information from anno-
tations to the proper data or control structure.

5.2 GCC as a JIT-compiler
For the sake of simplicity and prototyping, we are not using a
JIT compiler but Gcccil as a special case of “ahead of time”
compilation. In fact it is not totally irrealistic as some applications
could be compiled at install-time using a dedicated compiler (e.g.,
media codecs on embedded hardware). CIL is really used as a
portability layer.

In a real-world JIT compiler there would be several infrastruc-
ture differences:

• the need to implement some loop transformations (strip-mining,
peeling) not found in JIT compilers;

• baseline code generation should be simpler and faster.

5.3 Compilation flow
Thanks to GCC’s flexibility, our prototype split compilation frame-
work consists of 2 versions of GCC, one offline to generate byte-
code and one ahead-of-time to generate native code. Both use vec-
torization but annotation generation replaces the actual transforma-
tion in the bytecode compiler, whereas all expensive analyses are
disabled in the native compiler.

Annotations are passed as custom attributes in CIL (outside
GCC).

Inside GCC they are mirrored to GCC attributes, which are
of the form TREE LIST of tree nodes. They have less flexibility
though, as they do not have a type system and follow a looser
structure.

5.3.1 Compilation to CIL: offline stage
• Modified autovect pass (offline version).

The loop analysis relies on GCC’s infrastructure for ex-
pensive operations like scalar evolution (induction variable
recognition and substitution) and dependence analysis.

If vectorization is successful, it has to produce an attribute
node in GCC with the annotation attached to the enclosing
function and identified by with its loop number. We suppose
there are neither downstream passes impacting the ordering
and count of loops, nor upstream passes in the second stage
native compiler resulting in skewed loop numbers.

Do not perform the actual loop transformation and code
generation.

• The CIL code generation pass generates custom attributes from
the attributes and additionnal data as classes describing the
attributes.

5.3.2 Compilation from CIL: online stage
• Read CIL custom attributes and parse them into GCC attributes
• Modified autovect pass (online version).

Check if there exists an annotation corresponding to the
current loop number.

Build vectorization structures from the annotation.

Complete the structures with missing target-specific infor-
mation (very fast analyses).

Perform the actual loop transformation and generate the
code.

In addition, the CLI front-end had to be slightly modified to
comply with the single basic block and latch per loop constraint.
A temporary hack permits to recognize arrays, using the mangled
name produced by the back-end.

5.4 Describing fine grain parallelism
One of the main goals of our vector-aware IL is to address different
targets. Rather than a particular vector size, we are interested to
know the maximal vector length for the code. Thus we need our
annotations to use a higher level representation, i.e. a virtual vector
notation á la Fortran90 for array statements.

Unfortunatly annotations can only be attached to metadata, not
blocks of code. This is a challenge for the expression of fine grain
parallelism. We considered the following solutions:

• Having a library with special (virtual) vector types and intrin-
sics and emitting a vectorized version.

• Using method level annotations. This results in some code bloat
though: making the link between annotation and code is not
trivial in this scheme and requires hand made mapping using
offsets, special numbering.

• In the previous scheme, loops bodies can be outlined which
gives more flexibility to annotate them. It relies heavily on the
inliner and results in code growth as it requires to pass all local
variables as arguments. Arguments can be annotated thanks to
standard attributes called modopts.

• last solution is to annotate data uses. Locals can not be anno-
tated, and making everything global kills optimization opportu-
nities in the JIT so the best way is to annotate types: we flag
when a particular type access has a “special” meaning, and an-
notate the semantics of those accesses in types as seen in Fig-
ure 4.



foo() {
[vector ->] int x[N]; /* vector access */
[vector ->] int y[N];
[vector ->] int a[1]; /* promotoed to vector type */
...
for(i=0; i<N; i++){

z.vec[i] = a.vec * x.vec[i] + y.vec[i];
}

}

Figure 4. using ’vector’ array types

In practice, as shown in Figure 5, we combine custom attributes
to annotate type and access semantics with properties of value
types, namely explicit layout, giving a way to access to the same
data with a different name (similar to C unions, as there is no type
aliasing in CIL). The data access is still correct, with a different
type of indirection to access the variable (loading the array address
with ldsflda and then loading the field with ldfld instead of
ldind, which the JIT should turn into a constant 0 plus the ad-
dress).This scheme presents an overhead for true scalar variables
as they are turned into value types.

.class public explicit sealed serializable
ansi ’array’ extends
[’mscorlib’]System.ValueType

{
.size 64
.field [0] public specialname

int32 ’elem__’

// alternate vector access via union-like fields
.field [0] public specialname

int32 ’vec_elem__’
.custom instance void

class ’VirtualVector’::ctor() = /* ... */
}

...
// load the array adress
ldloca.s 0
// load the field :
ldfld int32 ’array’::vec_elem__
...

Figure 5. bytecode for ’vector’ arrays

This kind of annotation would also enable to encode more com-
plicated patterns as shown in Figure 6 and add a special semantics
to those new data accesses which are statically encoded in the type.
Data shuffling can introduce intermediate copies in this representa-
tion though which can lead to bytecode growth.

It can be noted that this scheme also allows the use of some
methods added to the value type ’array’ class annotated with special
’intrinsic’ semantics for the compiler, similarly to a library scheme.

6. Implementation Status
Work is still in progress. Only simple cases could be vectorized so
far, and we did not collect significant performance mesurements
with pre-vectorizer passes disabled.

We expect to show significant performance enhancements in
terms of compilation time in the online pass. We also expect to
demonstrate performance levels on par with static (one-stage) com-

foo() {
[vector ->] int c[1]; /* promoted to vector type */
[vector ->] int a[N];
for(i=0; i<N; i++){

c.vect_reduction += a.vect[i];
}

for(i=0; i<len; i++){
... = a.vec_even[2*i]

}
}

Figure 6. more complex patterns

pilation of the source benchmarks. Our optimism is driven by the
good scalar performance results by Costa et al. with Gcccli. [5].

7. Perspectives
Beyond automatic intra-word vectorization, the next step will be to
map general purpose intermediate languages such as CIL to parallel
heterogeneous targets, e.g, graphical processing engines (GPU) or
numerical computation accelerators.

Our ongoing work in split compilation also extends to register
allocation. The fast linear-scan algorithm of most JIT compilers
can be enhanced thanks to annotations, and driven to perform as
well as any static allocation and spilling heuristics. The idea here
is not only to feed an existing algorithm with annotations, but
to revisit the whole process, and to propose a generic allocation
and spilling framework where annotations allow to emulate costly
variants in linear time. The same principle could also be applied to
loop transformations or to coarser grain function level parallelism.

In the long term, we also plan to integrate split compilation
in a link-time optimization framework. In synchrony with GCC’s
LTO effort, we will suggest intermediate language improvements
in favor of future split compilation uses.

Acknowledgments
We would like to thank Sebastian Pop for his help and advice. We
are also indebted to the autovect group at IBM Haifa and to Roberto
Costa. Eventually, split compilation and GCC CLI were born from
the original vision and dedicated efforts of Marco Cornero from
STMicroelectronics.

References
[1] F. Bodin, E. Rohou, and A. Seznec. Salto: System for assembly-

language transformation and optimization. In Workshop on Compilers
for Parallel Computers (CPC’96), Dec. 1996.

[2] C. Calcagno, W. Taha, L. Huang, and X. Leroy. Implementing multi-
stage languages using ASTs, gensym, and reflection. In GPCE’03,
volume 2830 of Lecture Notes in Computer Science, pages 57–76.
Springer-Verlag, 2003.

[3] A. Cohen, S. Donadio, M.-J. Garzaran, C. Herrmann, O. Kiselyov,
and D. Padua. In search of a program generator to implement
generic transformations for high-performance computing. Science
of Computer Programming, 62(1):25–46, Sept. 2006. Special issue
on the First MetaOCaml Workshop 2004.

[4] M. Cornero, R. Costa, R. F. Pascual, A. C. Ornstein, and E. Rohou.
An Experimental Environment Validating the Suitability of CLI as
an Effective Deployment Format for Embedded Systems. In Interna-
tional Conference on High Performance Embedded Architectures &
Compilers (HiPEAC), Göteborg, Sweden, Jan. 2008.

[5] R. Costa, A. C. Ornstein, and E. Rohou. CLI back-end for GCC. In
GCC Summit, Ottawa, Canada, June 2007.



[6] C. Dittamo, A. Cisternino, and M. Danelutto. Parallelization of C#
programs through annotations, 2007.

[7] S. Donadio, J. Brodman, T. Roeder, K. Yotov, D. Barthou, A. Cohen,
M. Garzaran, D. Padua, and K. Pingali. A language for the compact
representation of multiple program versions. In Languages and
Compilers for Parallel Computers (LCPC’05), Lecture Notes in
Computer Science, Hawthorne, New York, Oct. 2005. Springer
Verlag. 15 pages.

[8] J. Jones and S. Kamin. Annotating java bytecodes in support of
optimization. J. of Concurrency: Practice and Experience, 2000.

[9] C. Krintz and B. Calder. Using annotations to reduce dynamic
optimization time. In SIGPLAN Conference on Programming
Language Design and Implementation, pages 156–167, 2001.

[10] C. Lattner and V. Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In ACM Conf. on Code
Generation and Optimization (CGO’04), San Jose, CA, Mar. 2004.

[11] D. Naishlos. Autovectorization in GCC. GCC summit, June 2004.

[12] D. Nuzman and A. Zaks. Autovectorization in GCC - two years later.
GCC summit, June 2006.

[13] R. F. Pascual. GCC CIL frontend.
http://www.hipeac.net/node/823, 2006.

[14] P. Pominville, F. Qian, R. Vallée-Rai, L. Hendren, and C. Verbrugge.
A framework for optimizing java using attributes. In Compiler
Construction, 10th International Conference (ETAPS/CC’01), pages
334–554, 2001.

[15] J. Robert L. Bocchino and V. S. Adve. Vector LLVA: a virtual vector
instruction set for media processing. In VEE ’06: Proceedings of the
second international conference on Virtual execution environments,
pages 46–56, New York, NY, USA, 2006. ACM Press.

[16] L. Van Put, D. Chanet, B. De Bus, B. De Sutter, and K. De Bosschere.
Diablo: a reliable, retargetable and extensible link-time rewriting
framework. In Proceedings of the 2005 IEEE International
Symposium On Signal Processing And Information Technology, pages
7–12, Athens, 12 2005. IEEE.

[17] P. Wu, A. E. Eichenberger, A. Wang, and P. Zhao. An integrated
simdization framework using virtual vectors. In ICS ’05: Proceedings
of the 19th annual international conference on Supercomputing,
pages 169–178, New York, NY, USA, 2005. ACM Press.


