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Abstract. Iterative compilation is an efficient approach to optimize pro-
grams on rapidly evolving hardware, but it is still only scarcely used in
practice due to a necessity to gather a large number of runs often with
the same data set and on the same environment in order to test many
different optimizations and to select the most appropriate ones. Natu-
rally, in many cases, users cannot afford a training phase, will run each
data set once, develop new programs which are not yet known, and may
regularly change the environment the programs are run on.
In this article, we propose to overcome that practical obstacle using Col-
lective Optimization, where the task of optimizing a program leverages
the experience of many other users, rather than being performed in iso-
lation, and often redundantly, by each user. Collective optimization is
an unobtrusive approach, where performance information obtained af-
ter each run is sent back to a central database, which is then queried
for optimizations suggestions, and the program is then recompiled ac-
cordingly. We show that it is possible to learn across data sets, pro-
grams and architectures in non-dynamic environments using static func-
tion cloning and run-time adaptation without even a reference run to
compute speedups over the baseline optimization. We also show that it
is possible to simultaneously learn and improve performance, since there
are no longer two separate training and test phases, as in most studies.
We demonstrate that extensively relying on competition among pairs
of optimizations (program reaction to optimizations) provides a robust
and efficient method for capturing the impact of optimizations, and for
reusing this knowledge across data sets, programs and environments. We
implemented our approach in GCC and will publicly disseminate it in
the near future.

1 Introduction

Many recent research efforts have shown how iterative compilation can outper-
form static compiler optimizations and quickly adapt to complex processor ar-
chitectures [33, 9, 6, 24, 16, 10, 20, 31, 27, 26, 18, 19]. Over the years, the approach
has been perfected with fast optimization space search techniques, sophisti-
cated machine-learning algorithms and continuous optimization [25, 29, 28, 34,
3, 8, 32, 23, 21]. And, even though these different research works have demon-
strated significant performance improvements, the technique is far from main-
stream in production environments. Besides the usual inertia for adopting new
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approaches, there are hard technical hurdles which hinder the adoption of iter-
ative approaches.

The most important hurdle is that iterative techniques almost all rely on a
large number of training runs (either from the target program or other training
programs) to learn the best candidate optimizations. And most of the aforemen-
tioned articles run the same programs, generated with the exact same compiler

on the same architecture with the same data sets, and do this a large number

of times (tens, hundreds or thousands of times) in order to deduce the shape
of the optimization space. Naturally, in practice, a user is not going to run the
same data set multiple times, will change architectures every so often, and will
upgrade its compiler as well. We believe this practical issue of collecting a large
number of training information, relying only on production runs (as opposed to
training runs where results are not used) to achieve good performance is the
crux of the slow adoption of iterative techniques in real environments.

We propose to address this issue with the notion of Collective Optimization.
The principle is to consider that the task of optimizing a program is not an
isolated task performed by each user separately, but a collective task where
users can mutually benefit from the experience of others. Collective optimization
makes sense because most of the programs we use daily are run by many other
users, either globally if they are general tools, or within our or a few institutions
if they are more domain-specific tools. Achieving collective optimization requires
to solve both an engineering and a research issue.

The engineering issue is that users should be able to seamlessly share the
outcome of their runs with other users, without impeding execution or com-
pilation speed, or complicating compiler usage. The key research issue is that
we must progressively improve overall program performance while, at the same

time, we learn how it reacts to the various optimizations, all solely using produc-

tion runs ; in reality, there is no longer such a thing as a training phase followed
by a test/use phase, both occur simultaneously. Moreover, we must understand
whether it is possible and how to learn across data sets, programs or platforms.
An associated research issue is to come up with a knowledge representation that
is relevant across data sets, programs and platforms. Finally, because a user will
generally run a data set only once, we must learn the impact of optimizations on
program performance without even a reference run to decide whether selected
optimizations improved or degraded performance compared to the baseline op-
timization.

In this article, we show that it is possible to continuously learn across data
sets, programs or platforms, relying solely on production runs, and progressively
improving overall performance across runs, reaching close to the best possible
iterative optimization performance, itself achieved under idealized (and non-
realistic) conditions. We show that extensively relying on competition among
pairs of optimizations provides a robust and efficient method for capturing the
impact of optimizations on program performance, without requiring reference
runs and while remaining relevant across data sets, programs and architectures.
While most recent research studies are focused on learning across programs [28,
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Fig. 1. Collective Optimization Framework

3, 7], we find that, in practice, learning across data sets, and to a lesser ex-
tent, across architectures, is significantly more important and useful. Finally, we
present a solution to the engineering issue in the form of an extension to GCC
which relies on a central database for transparently aggregating runs results from
many users, and performing competitions between optimizations during runs.

2 Experimental Setup

In order to perform a realistic evaluation of collective optimization, each bench-
mark has to come with several data sets in order to emulate truly distinct
runs. To our knowledge, only the MiDataSets [13] data set suite based on the
MiBench [17] benchmark suite currently provides 20+ data sets for 26 bench-
marks.

All programs are optimized using the GCC 4.2.0 compiler. The collective
optimization approach and framework are compatible with other compilers, but
GCC is now becoming a competitive optimization compiler with a large num-
ber of embedded program transformation techniques. We identified 88 program
transformations, called through corresponding optimization flags, that are known
to influence performance, and 8 parameters for each parametric optimization.
These transformations are randomly selected to produce an optimization com-
bination.

In order to unobtrusively collect information on a program run, and re-
optimize the program, GCC is modified so as to add to each program a routine
which is executed when the program terminates. This termination routine col-
lects several information about the program (a program identifier, architecture
and compiler identifiers, which optimizations were applied) and about the last
run (performance measurements; currently, execution time and profiling infor-
mation), and stores them into a remote database.

Then, it queries a server associated with the remote database in order to
select the next optimizations combination. The recompilation takes place peri-
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odically (set by user) in the background, between two runs.1 No other modifica-
tion takes place until the next run, where the process loops again, as shown in
Figure 1.

The programs were compiled and run on three architectures - AMD Athlon
XP 2800+ (AMD32) - 5 machines, AMD Athlon 64 3700+ (AMD64) - 16 ma-
chines and Intel Xeon 2.80GHz (IA32) - 2 machines.

3 Motivation
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Fig. 2. (a) Performance upper-bound of Collective Optimization (AMD Athlon 64
3700+, GCC 4.2.0), (b) Computing the probability distribution to select an optimization
combination based on continuous competition between combinations

The experimental methodology of research in iterative optimization usually
consists in running many times the same program on the same data set and on
the same platform. Hence, it can be interpreted as an idealized case of collec-
tive optimization, where the experience of others (program, data set, platform)
would always perfectly match the target run. In other words, it is a case where
no experimental noise would be introduced by differences in data sets, programs
or platforms. Consequently, iterative optimization can be considered as a per-
formance upper-bound of collective optimization. Figure 2(a) shows the best
speedup achieved for each benchmark and each data set (averaged over 20 dis-
tinct data sets) over the highest GCC optimization level (-O3) by selecting the
best optimizations combination among 200 for each program and data set. This
experiment implicitly shows that collective optimization has the potential to
yield high speedups.

1 Note that if the recompilation is not completed before another run starts, this latter
run just uses the same optimizations as the previous run, and the evaluation of the
new optimizations is just slightly delayed by one or a few runs.
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4 Overview

This section provides an overview of the proposed approach for collective op-
timization. The general principle is that performance data about each run is
transparently collected and sent to a database; and, after each run, based on
all the knowledge gathered so far, a new optimizations combination is selected
and the program is recompiled accordingly. The key issue is which optimizations
combination to select for each new run, in order to both gather new knowledge
and keep improving average program performance as we learn.
In collective optimization, several global and program-specific probability dis-
tributions capture the accumulated knowledge. Combinations are randomly se-
lected from one of several probability distributions which are progressively built
at the remote server.

The different “maturation” stages of a program. For each program,
and depending on the amount of accumulated knowledge, we distinguish three
scenarios: (1) the server may not know the program at all (new program), (2) only
have information about a few runs (infrequently used or a recently developed
program), or (3) have information about many runs.

Stage 3: Program well known, heavily used. At that maturation stage, enough
runs have been collected for that program that it does not need the experience of
other programs to select the most appropriate optimizations combinations for it-
self. This knowledge takes the form of a program-specific probability distribution
called d3. Stage 3 corresponds to learning across data sets.

Stage 2: Program known, a few runs only. At that maturation stage, there is
still insufficient information (program runs) to correctly predict the best com-
binations by itself, but there is already enough information to start “character-
izing” the program behavior. This characterization is based on the comparison
of the impact of optimizations combinations tried so far on the program against
their impact on other programs (program reaction to optimizations). If two pro-
grams behave alike for a subset of combinations, they may well behave alike for
all combinations. Based on this intuition, it is possible to find the best matching
program, after applying a few combinations to the target program. Then, the
target program probability distribution d2 is given by the distribution d3 of the
matching program. This matching can be revisited with each additional infor-
mation (run) collected for the target program. Stage 2 corresponds to learning
across programs.

Stage 1: Program unknown. At that stage, almost no run has been performed,
so we leverage and apply optimizations suggested by the “general” experience
collected over all well-known programs. The resulting d1 probability distribution
is the unweighted average of all d3 distributions of programs which have reached
Stage 3. Stage 1 is an elementary form of learning across programs.

Selecting stages. A program does not follow a monotonic process from
Stage 1 to Stage 3, even though it should intuitively mature from Stage 1 to
Stage 2 to Stage 3 in most cases. There is a permanent competition between
the different stages distributions (d1, d2, d3). At any time, a program may elect
to draw optimizations combinations from any stage distribution, depending on
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which one appears to perform best so far. In practice and on average, we find
that Stage 3 (learning across data sets) is by far the most useful stage. Stage 1
and Stage 2 stages are respectively useful in the first ten, and the first hundreds
runs of a program on average, but Stage 3 rapidly becomes dominant. The
competition between stages is implemented through a “meta” distribution dm,
which reflects the current score of each stage distribution for a given program.
Each new run is a two-step random process: first, the server randomly selects
the distribution to be used, and then, it randomly selects the combination using
that distribution. How scores are computed is explained in Section 5. Using that
meta-distribution, the distribution with the best score is usually favored.

5 Collective Learning

In this section, we explain in more detail how to compute the aforementioned
distributions to achieve collective learning.

5.1 Building the program distribution d3 using statistical

comparison of optimizations combinations

Comparing two combinations C1, C2. In order to build the aforementioned dis-
tributions, one must be able to compare the impact of any two optimizations
combinations C1, C2 on program performance.

However, even the simple task of deciding whether C1 > C2 can become
complex in a real context. Since the collective optimization process only re-
lies on production runs, two runs usually correspond to two distinct data sets.
Therefore, if two runs with respective execution times T1 and T2, and where
optimizations combinations C1 and C2 have been respectively applied, are such
that T1 < T2, it is not possible to deduce that C1 > C2.

To circumvent that issue, we perform run-time comparison of two optimiza-
tions combinations using cloned functions. C1 and C2 are respectively applied
to the clones f1 and f2 of a function f . At run-time, for each call to f , either f1

or f2 is called; the clone called is randomly selected using an additional branch
instruction and a simple low-overhead pseudo-random number generation tech-
nique emulating uniform distribution. Even if the routine workload varies upon
each call, the random selection of the clone to be executed ensures that the aver-
age workload performed by each clone is similar. As a result, the non-optimized
versions of f1 and f2 account for about the same fraction of the overall execu-
tion time of f . Therefore, if the average execution time of the clone optimized
with C1 is smaller than the average execution time of the clone optimized with
C2, it is often correct to deduce that C1 is better than C2, i.e., C1 > C2. This
statistical comparison of optimizations combinations requires no reference, test
or training run, and the overhead is negligible.

We have shown in [14] the possibility to detect the influence of optimizations
for statically compiled programs with stable behavior using function cloning and
run-time low-overhead phase detection. Stephenson et al. [30] and Lau et al. [22]
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demonstrated how to evaluate different optimizations for programs with irreg-
ular behavior in dynamic environments using random function invocations and
averaging collected time samples across a period of time. We combined these
techniques to enable run-time transparent performance evaluation for statically-
compiled programs with any behavior here.

On the first program run, profiling information is collected and sent to the
database. All the most time-consuming routines accounting for 75% or more of
the total execution time and with an average execution time per call greater
than a platform-specific threshold are cloned. The purpose of this threshold is to
ensure that the overhead of the additional branch instruction remains negligible
(less than 0.1%) compared to the average execution time per function call. Since
profiling information is periodically collected at random runs, more routines can
be added during the next runs (for instance if different parts of the call graph
are reached depending on the data sets), the target routines are not set in stone
after the first run. More implementation details are provided in Section 6.

Computing d3. When two combinations C1 and C2 are compared on a pro-
gram using the aforementioned cloned routines, the only information recorded is
whether C1 > C2 or C1 < C2. Implicitly, a run is a competition between two op-
timizations combinations, and the winning combination scores 1 and the losing
is 0 as shown in Figure 2(b). These scores are cumulated for each combination
and program. The scores are then normalized per combination, by the number
of times the combination was tried (thus implicitly decreasing the average score
of the losing combination). Then the overall distribution is normalized so that
the sum of all combinations scores (probabilities) is 1.

Because this distribution only reflects the relative “merit” of each combina-
tion, and not the absolute performance (e.g., execution time or speedup), it is a
fairly resilient metric, tolerant to variations in measurements.

5.2 Building the aggregate distribution d1

d1 is simply the average of all d3 distributions of each program. d1 reflects the
most common cases: which optimizations combinations perform best in general.
It is also possible to compose more restricted aggregate distributions, such as
per architecture, per compiler, per programs subsets,. . . , though this is left for
future work.

5.3 Building the matching distribution d2

Stage 2 is based on the intuition that it is unlikely that all programs exhibit
widely different behavior with respect to compiler optimizations, or conversely
that, once the database is populated with a sufficient number of programs, it
is likely that a new program may favor some of the same optimizations combi-
nations as some of the programs already in the database. The main difficulty
is then to identify which programs best correspond to the current target one.
Therefore, we must somehow characterize programs, and this characterization
should reflect which optimizations combinations a program favors.
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As for d3, we use the metric-independent comparison between two optimiza-
tions combinations C1 and C2. E.g., C1 > C2 is a reaction to program optimiza-

tions and is used as one characterization of the program. Let us assume that
C1 > C2 for the target program P and C1 > C2 for a program P ′ and C1 < C2

for a program P ′′ compared against P . Then, P ′ gets a score of 1, and P ′′ a score
of 0. The program with the best score is considered the matching program, and
d2 is set to the d3 of that program. In other words, for d2 we use a competition
among programs. The more combinations pairs (reactions to optimizations) are
compared, the more accurate and reliable the program matching.

Still, we observed that beyond 100 characterizing combinations pairs (out
of C2

100 = 200×199

/ 2 = 19900 possible combinations pairs), performance barely

improves. In addition, it would not be practical to recompute the matching
upon each run based on an indefinitely growing number of characterizations.
Therefore, we restrict the characterization to 100 combinations pairs, which are
collected within a rolling window (FIFO). However, the window only contains
distinct optimizations combinations pairs. The rolling property ensures that the
characterization is permanently revisited and rapidly adapted if necessary. The
matching is attempted as soon as one characterization is available in the window,
and continuously revisited with each new modification of the rolling window.

Cavazos et al. [7] have shown that it is possible to improve similar program
characterizations by identifying and then restricting to optimizations which carry
the most information using the mutual information criterion. However, these
optimizations do not necessarily perform best, they are the most discriminatory

and one may not afford to “test” them in production runs. Moreover, we will later
see that this approach could only yield marginal improvement in the start-up
phase due to the rapid convergence of Stage 3/d3.

5.4 Scoring distributions

As mentioned in Section 4, a meta-distribution is used to select which stage
distribution is used to generate the next optimizations combination. For each
run, two distributions d and d′ are selected using two draws from the meta-
distribution (they can be the same distributions). Then, an optimizations com-
bination is drawn from each distribution (C1 using d and C2 using d′), which
will compete during the run. Scoring is performed upon the run completion; note
that if C1 and C2 are the same combinations, no scoring takes place.

Let us assume, for instance, that for the run, C1 > C2. If, according to d,
C1 > C2 also, then one can consider that d “predicted” the result right, and gets
a score of 1. Conversely, it would get a score of 0. The server also keeps track of
the number of times each distribution is drawn, and the distribution value in the
meta-distribution is the ratio of the sum of all its scores so far and the number
of times it was drawn. Implicitly, its score decreases when it gets a 0, increases
when it gets a 1, as for individual distributions.

This scoring mechanism is robust. If a distribution has a high score, but starts
to behave poorly because the typical behavior of the program has changed (e.g.,
a very different kind of data sets is used), then its score will plummet, and
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the relative score of other distributions will comparatively increase, allowing to
discover new strong combinations. Note that d3 is updated upon every run (with
distinct combinations), even if it was not drawn, ensuring that it converges as
fast as possible.

6 Collective Compiler

Program identification. At the moment, a program is uniquely identified us-
ing a 32-byte MD5 checksum of all the files in its source directory. This identifier
is sufficient to distinguish most programs, and it has the added benefit of not
breaking confidentiality: no usable program information is sent to the database.
In the future, we also plan to use the vector of program reactions to transfor-
mations as a simple and practical way to characterize programs based solely on
execution time.

Termination routine. In order to transparently collect run information, we
modified GCC to intercept the compilation of the main() function, and to insert
another interceptor on the exit() function. Whenever the program execution
finishes, our interceptor is invoked and it in turn checks whether the Collective

Stats Handler exists, invokes it to send program and run information to the
Collective Optimization Database. At any time, the user can opt in or out of
collective optimization by setting or resetting an environment variable.

Cloning. As mentioned before, optimizations combinations are evaluated
through cloned routines. These routines are the most time-consuming program
routines (top 3 routines and/or 75% or more of the execution time). They are
selected using the standard gprof utility. The program is profiled at the first
and then random runs. Therefore, the definition of the top routines can change
across runs. We progressively build an average ranking of the program routines,
possibly learning new routines as they are exercised by different data sets. The
speedups mentioned in the following performance evaluation section are provided
with respect to a non-instrumented version of the program, i.e., they factor in
the instrumentation, which usually has a negligible impact.

We modified GCC to enable function cloning and be able to apply different
optimizations directly to clones and original functions. This required changes
in the core of the compiler since we had to implement full replication of parts
of a program AST, and to change the optimization pass manager to be able to
select specific optimizations combinations on a function level. When GCC clones
a function, it inserts profiling calls at the prolog and epilog of the function,
replaces static variables and inserts additional instructions to randomly select
either the original or the cloned version.

Security. The concept of collective optimization raises new issues, especially
security. First, very little program information is in fact sent to the database.
The profile routine names are locally hashed using MD5, and only run-time
statistics (execution times) are sent. Second, while we intend to set up a global
and openly accessible database, we do expect companies will want to set up
their own internal collective optimization database. Note that they can then get
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the best of both worlds: leverage/read information accessible from the global
database, while solely writing their runs information to their private database.
At the moment, our framework is designed for a single database, but this two-
database system is a rather simple evolution.

7 Performance Evaluation

 0.96

 1

 1.05

 1.1

 1.15

S
pe

ed
up

Collective
d1
d2
d3

Best
Baseline

 0

 0.5

 1

 1  10  100  1000  10000

M
et

a 
S

co
re

s

# Runs

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1  10  100  1000  10000

S
pe

ed
up

# Runs

Collective
Architectures

No d1
No d2

No d1,d2
Single data set

Fig. 3. (a) Average performance of collective optimization and individual distributions
(bottom: meta-scores of individual distributions; grey is d3, black is d2, white is d1),
(b) Several collective optimization variants.

In Figure 3(a), Collective corresponds to the full process described in ear-
lier sections, where the appropriate distribution is selected using the meta-
distribution before every run; performance is averaged over all programs (for
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instance, Run=1 corresponds to performance averaged over 1 random run for
each program). For each program, we have collected 20 data sets and can apply
200 different optimizations combinations, for a total of 4000 distinct runs per pro-
gram. The main approximation of our evaluation lays in the number of data sets;
upon each run, we (uniformly) randomly select one among 20 data sets. How-
ever, several studies have shown that data sets are often clustered within a few
groups breeding similar behavior [11], so that 20 data sets exhibiting sufficiently
distinct behavior, may be considered a non-perfect but reasonable emulation of
varying program behavior across data sets. In order to further assess the impact
of using a restricted number of data sets, we have evaluated the extreme case
where a single data set is used. These results are reported in Figure 3(b), see
Single data set, where a single data set is used per program in each experiment,
and then, for each x-axis value (number of runs), performance is averaged over all
programs and all data sets. Using a single data set improves convergence speed
though only moderately, suggesting Collective could be a slightly optimistic but
reasonable approximation of a real case where all data sets are distinct.

After 10000 runs per program, the average Collective speedup, 1.11, is fairly
close to the Best possible speedup, 1.13, the asymptotic behavior of single-data
set experiments. The other graphs (d1, d2, d3 ) report the evolution of the av-
erage performance of optimizations combinations drawn from each distribution.
At the bottom of the figure, the grey filled curve corresponds to the meta score
of d3, the black one to d2 and the white one to d1.

Learning across programs. While the behavior of d2 in Figure 3(a) suggests
that learning across programs yields modest performance improvements, this
experiment is partly misleading. d3 rapidly becomes a dominant distribution,
and as explained above, quickly converges to one or a few top combinations due
to restricted interval polling. d2 performance will improve as more characterizing
optimizations combinations pairs fill up the rolling window. And Figure 3(b)
shows that without d2, the meta distribution does not converge as fast or to an
as high asymptotic value.

Collective versus d3. While the better performance of d3 over Collective, in
Figure 3(a), suggests this distribution should solely be used, one can note its
performance is not necessarily the best in the first few runs, which is important
for infrequently used codes. Moreover, the average Collective performance across
runs becomes in fact very similar after d3 has become the dominant distribution,
since mostly d3 combinations are then drawn. But a more compelling reason for
privileging Collective over d3 is the greater robustness of collective optimization
thanks to its meta-distribution scheme.

In Figure 3(b), we have tested collective optimization without either d1, d2

or neither one. In the latter case, we use the uniform random distribution to
discover new optimizations, and the meta-distribution arbitrates between d3 and
uniform; by setting the uniform distribution initial meta-score to a low value
with respect to d3, we can both quickly discover good optimizations without
degrading average performance;2 the uniform distribution is not used when only

2 This is important since the average speedup of the uniform distribution alone is 0.7.
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d1 or d2 are removed. As shown in Figure 3(b), collective optimization converges
more slowly when either d1, d2 or both are not used. These distributions help
in two ways. d1 plays its main role at start-up, by bringing a modest average
2% improvement, and performance starts lower when it is not used. Conversely,
d2 is not useful at start-up, but provides a performance boost after about 50 to
100 runs when its window is filled and the matching is more accurate. d2 does in
fact significantly help improve the performance of Collective after 100 runs, but
essentially by discovering good new optimizations, later adopted by d3, rather
than due to the intrinsic average performance of the optimizations combinations
suggested by d2.

Learning across architectures. Besides learning across data sets and programs,
we have also experimented with learning across architectures. We have collected
similar runs on an Athlon 32-bit (AMD32) architecture and an Intel 32-bit (IA32)
architecture (recall all experiments above are performed on an Athlon 64-bit ar-
chitecture), and we have built the d3 distributions for each program. At start-up
time, on the 64-bit architecture, we now use a d4 distribution corresponding
to the d3 distribution for this program but other architectures (and 19 data
sets, excluding the target data set); the importance of d4 will again be deter-
mined by its meta-score. The rest of the process remains identical. The results
are reported in curve Architectures on Figure 3(b). Start-up performance does
benefit from the experience collected on the other architectures. However, this
advantage fades away after about 2000 runs. We have also experimented with
simply initializing d3 with the aforementioned d4 instead of using a separate d4

distribution. However the results were poorer because the knowledge acquired
from other architectures was slowing down the rate at which d3 could learn the
behavior of the program on the new architecture.

8 Background and Related Work

Iterative or adaptive compilation techniques usually attempt to find the best
possible combinations and settings of optimizations by scanning the space of all
possible optimizations. [33, 9, 6, 24, 10, 20, 31, 27, 26, 19] demonstrated that opti-
mizations search techniques can effectively improve performance of statically
compiled programs on rapidly evolving architectures, thereby outperforming
state-of-the-art compilers, albeit at the cost of a large number of exploration
runs.

Several research works have shown how machine-learning and statistical tech-
niques [25, 29, 28, 34] can be used to select or tune program transformations based
on program features. Agakov et al. [3] and Cavazos et al. [8] use machine-learning
to focus iterative search using either syntactic program features or dynamic hard-
ware counters and multiple program transformations. Most of these works also
require a large number of training runs. Stephenson et al. [28] show more com-
plementarity with collective optimization as program matching is solely based
on static features.
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Several frameworks have been proposed for continuous program optimiza-
tion [4, 32, 23, 21]. Such frameworks tune programs either during execution or off-
line, trying different program transformations. Such recent frameworks like [21]
and [23] pioneer lifelong program optimization, but they expose the concept
rather than research practical knowledge management and selection strategies
across runs, or unobtrusive optimization evaluation techniques. Several recent re-
search efforts [14, 22, 30] suggest to use procedure cloning to search for best opti-
mizations at run-time. In this article we combine and extend techniques from [14]
that are compatible with regular scientific programs and use low-overhead run-
time phase detection, and methods from [30, 22] that can be applied to programs
with irregular behavior in dynamic environments by randomly executing code
versions and using statistical analysis of the collected execution times with a
confidence metric. Another recent research project investigates the potential of
optimizing static programs across multiple data sets [13] and suggests this task
is tractable though not necessarily straightforward.

The works closest to ours are by Arnold et al. [5] and Stephenson [30]. The
system in [5] collects profile information across multiple runs of a program in IBM
J9 Java VM to selectively apply optimizations and improve further invocations
of a given program. However it doesn’t enable optimization knowledge reuse from
different users, programs and architectures. On the contrary, Stephenson tunes a
Java JIT compiler across executions by multiple users. While several aspects of
his approach is applicable to static compilers, much of his work focuses on Java
specifics, such as canceling performance noise due to methods recompilation,
or the impact of garbage collection. Another distinctive issue is that, in a JIT,
the time to predict optimizations and to recompile must be factored in, while
our framework tolerates well long lapses between recompilations, including sev-
eral runs with the same optimizations. Finally, we focus more on the impact of
data sets from multiple users and the optimization selection robustness (through
competitions and meta-distribution).

9 Conclusions and Future Work

The first contribution of this article is to identify the true limitations of the
adoption of iterative optimization in production environments, while most stud-
ies keep focusing on showing the performance potential of iterative optimization.
We believe the key limitation is the large amount of knowledge (runs) that must
be accumulated to efficiently guide the selection of compiler optimizations. The
second contribution is to show that it is possible to simultaneously learn and
improve performance across runs. The third contribution is to propose multi-
level competition (among optimizations and their distributions which capture
different program knowledge maturation stages, and among programs) to un-
derstand the impact of optimizations without even a reference run for comput-
ing speedups, while ensuring optimization robustness. The program reactions
to transformations used to build such distributions provide a simple and prac-
tical way to characterize programs based solely on execution time. The fourth
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contribution is to highlight that knowledge accumulated across data sets for a
single program is more useful, in the real and practical context of collective
optimization, than the knowledge accumulated across programs, while most it-
erative optimization studies focus on knowledge accumulated across programs;
we also conclude that knowledge across architectures is useful at start-up but
does not bring any particular advantage in steady-state performance. The fifth
and final contribution is to address the engineering issue of unobtrusively col-
lecting runs information for statically-compiled programs using function cloning
and run-time adaptation mechanism.

The collective optimization approach opens up many possibilities which can
be explored in the future. We plan to use it to automatically and continuously
tune default GCC optimization heuristic or individual programs using recent
plugin system for GCC [15, 2] that allows to invoke transformations directly,
change their parameters, orders per function or even add plugins with new trans-
formations to improve performance, code size, power, and so on. After sufficient
knowledge has been accumulated, the central database may become a powerful
tool for defining truly representative benchmarks. We can also refine optimiza-
tions at the data set level by clustering data sets and using our cloning and
run-time adaptation techniques to select the most appropriate optimizations
combinations or even reconfigure processor at run-time thus creating self-tuning
intelligent ecosystem. We plan to publicly disseminate our collective optimiza-
tion framework, the run-time adaptation routines for GCC based on [12, 8] as
well as the associated central database at [1] in the near future.
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