
MiDataSets: Creating the Conditions for a More
Realistic Evaluation of Iterative Optimization

Grigori Fursin1, John Cavazos2, Michael O’Boyle2, and Olivier Temam1

1 ALCHEMY Group, INRIA Futurs and LRI, Paris-Sud University, France
{grigori.fursin,olivier.temam}@inria.fr

2 Institute for Computing Systems Architecture, University of Edinburgh, UK
{jcavazos,mob}@inf.ed.ac.uk

Abstract. Iterative optimization has become a popular technique to obtain im-
provements over the default settings in a compiler for performance-critical appli-
cations, such as embedded applications. An implicit assumption, however, is that
the best configuration found for any arbitrary data set will work well with other
data sets that a program uses.

In this article, we evaluate that assumption based on 20 data sets per bench-
mark of the MiBench suite. We find that, though a majority of programs exhibit
stable performance across data sets, the variability can significantly increase with
many optimizations. However, for the best optimization configurations, we find
that this variability is in fact small. Furthermore, we show that it is possible to find
a compromise optimization configuration across data sets which is often within
5% of the best possible configuration for most data sets, and that the iterative
process can converge in less than 20 iterations (for a population of 200 optimiza-
tion configurations). All these conclusions have significant and positive implica-
tions for the practical utilization of iterative optimization.

1 Introduction

Iterative optimization is an increasingly popular alternative to purely static compiler
optimization [17,12,8,24,7,10,18,3,20,23]. This is due to the growing complexity of
processor architectures and applications, its ability to adapt to new platforms and the
fact it is a simple and systematic optimization process. However, with this approach
comes new issues, e.g., the necessity to quickly explore a large optimization space
[7,10,18,3,11], and the sensitivity to data sets.

Iterative optimization is based on the notion that the compiler will discover the best
way to optimize a program through many evaluations of different optimization config-
urations. However, in reality, a user rarely executes the same data set twice. Therefore,
iterative optimization is based on the implicit assumption that the best optimization
configuration found will work well for all data sets of a program. To the best of our
knowledge, this assumption has never been thoroughly investigated.

Most studies on iterative optimization repeatedly execute the same program/data set
pair [7,12,10,18,3]. Therefore, they demonstrate the potential of iterative optimiza-
tion, but not how it would behave in real conditions. Other studies [15] have used

K. De Bosschere et al. (Eds.): HiPEAC 2007, LNCS 4367, pp. 245–260, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

246 G. Fursin et al.

Table 1. Key questions about the impact of data sets on iterative program optimization

Questions
1. Do programs exhibit significant performance variations across data sets ?
2. More broadly, do data sets react similarly to most optimizations ?
3. Does it matter which data set you train on for iterative optimization ?
4. Can iterative optimization perform well when training is done over multiple data sets ?
5. How fast can iterative optimization converge across multiple data sets ?
6. In practice, is it possible to compare the effect of two optimizations on two data sets ?

the test/train/ref data sets provided by the SPEC benchmark suite. A few stud-
ies have gone further and collected several data sets for a small number of bench-
marks [5,4], but these studies have only focussed on the effect of different data sets
to one optimization.

In order to investigate whether a compiler can effectively discover optimizations that
work well across data sets, we need to: (1) have a benchmark suite where each program
comes with a significant number of data sets, (2) get a better statistical understanding
of the impact of data sets on program performance and program optimization, and (3)
evaluate iterative optimization under more “realistic” conditions where data sets change
across executions.

We have assembled a collection of data sets, 20 per benchmark, for 26 benchmarks
(560 data sets in total) of the free, commercially representative MiBench [14] bench-
mark suite, which especially (but not only) target embedded-like applications; we call
this data set suite MiDataSets. Using this data set suite, we provide quantitative an-
swers to 6 key questions listed in Table 1 about the impact of data sets on program
performance and program optimization. Finally, we make a first attempt at emulating
iterative compilation across different data sets, as it would happen in reality.

We find that, though a majority of programs exhibit stable performance across data
sets, the variability can significantly increase with many optimizations. However, for
the best optimization configurations, we find that this variability is in fact small. Fur-
thermore, we show that it is possible to find a compromise configuration across data
sets which is often within 5% of the best possible optimization configuration for most
data sets, and that the iterative process can converge in less than 20 iterations (for a
population of 200 optimization configurations).

Section 2 briefly explains how we evaluated the different data sets and varied pro-
gram optimizations. Section 3 provides qualitative and quantitative answers to the ques-
tions listed in Table 1. Section 4 describe an attempt to emulate continuous optimization
in a realistic setting, that is, across several data sets. Sections 5 and 6 describe related
work and provide some initial conclusions.

2 Methodology

Platform, compiler and benchmarks. All our experiments are performed on a clus-
ter with 16 AMD Athlon 64 3700+ processors running at 2.4GHz, each with 64KB of
L1 cache, 1MB of L2 cache, and 3GB of memory. Each machine is running Mandriva

MiDataSets: Creating the Conditions 247

 1

 1.2

 1.4

 1.6

 1.8

 2

av
er

ag
e

di
jk

st
ra

cr
c3

2
jp

eg
_dsh

a
su

sa
n_

e
la

m
e

is
pe

ll
jp

eg
_c

tif
fm

ed
ia

n
rs

yn
th

tif
f2

bw
su

sa
n_

c
tif

f2
rg

ba
su

sa
n_

s
ad

pc
m

_c
rij

nd
ae

l_
e

ad
pc

m
_d

m
ad

rij
nd

ae
l_

d
bl

ow
fis

h_
e

bl
ow

fis
h_

d
qs

or
t

bi
tc

ou
nt

tif
fd

ith
er

st
rin

gs
ea

rc
h

pa
tr

ic
ia

A
ve

ra
ge

 b
es

t s
pe

ed
up

 w
ith

 s
td

. d
ev

ia
tio

n

Fig. 1. Average best speedup and std. deviation across all data sets (baseline-Ofastoptimization)

Linux 2006. To collect IPC, we use the PAPI 3.2.1 hardware counter library [1] and
PAPIEx 0.99rc2 tool. We use the commercial PathScale EKOPath Compiler 2.3.1 [2]
with the highest level of optimization, -Ofast, as the baseline optimization level. This
compiler is specifically tuned to AMD processors, and on average performs the same or
better than the Intel 9.0 compilers on the same platform. To perform iterative optimiza-
tion on each program and data set, we use a tool called PathOpt that comes with the
EKOPath compiler suite. This tool can run a program with a variety of global compiler
flags to find a set of flags that obtains the best performance on the targeted platform. We
use 121 compiler flags that are known to influence performance and we use PathOpt to
iteratively select random configurations of flags. 1 We ran the same randomly generated
200 configurations for each of the MiBench benchmarks and data sets. The PathOpt tool
uses CPU execution time to compare the effects of different transformations. Figure 1
shows the average speedups achieved for each benchmark and the standard deviation
across all data sets (the benchmarks are sorted by decreasing speedup).

Data sets. Most of the data sets for MiBench benchmarks are based on standard file
types, e.g., text, audio, image, etc. It is difficult to select a truly representative sample
from the population of all possible data inputs. Instead we collected 18 different data
sets per benchmark from a variety of sources including the internet, trying to vary size
and nature as well as the data set properties as much as possible. For example, we col-
lected images with various sizes, color depth, scenery, etc; texts and audio with various
length and styles. Some benchmarks share the same data sets, and interestingly, the out-
put of several benchmarks could be directly used as inputs to others. We largely decided
against synthesizing data sets which would artificially exercise programs except for a
few programs such as bitcount or quicksort which can readily accomodate syn-
thetic data sets. Finally, we reused 2 data sets small and large from the original bench-
marks, thus reaching 20 data sets per benchmark in total. Running all data sets usually
did not require any modification of the benchmarks (except forstringsearchwhere

1 For more information about EKOPath compiler flags and PathOpt tool refer to the EKOPath
compiler manual [2].

248 G. Fursin et al.

Fig. 2. Program IPC variation across data sets (baseline -Ofast optimization)

the data set is in fact embedded in the source code). It is our intention to make these
data sets publically available for other researchers to use.

3 Impact of Data Sets on Program Performance and Optimization

In this section, we try to understand how varying data sets can affect program perfor-
mance and iterative optimization by answering the key questions in Table 1. Beyond
providing qualitative and quantitative answers to these questions, we observe a num-
ber of properties which are directly relevant to the practical implementation of iterative
optimization.

3.1 Do Programs Exhibit Significant Performance Variations Across Data Sets ?

The purpose of this question is to understand whether program behavior is stable across
data sets. One way of examining this is to observe the IPC of a program across different
datasets. If the IPC varies considerably, it is likely that different parts of the program
are exercised depending on data input. In such a case an optimization found by iterative
compilation for a particular dataset may be inappropriate for another. It is important to
note that higher IPC does not mean faster code. We are merely using IPC as a means of
comparing the same program across different data sets,

We ran all data sets on the programs compiled with the -Ofast default optimiza-
tion flag (our baseline performance). In Figure 2, we plot the percentage of IPC vari-
ation with respect to the average IPC over all data sets; the average is computed per

MiDataSets: Creating the Conditions 249

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 50 100 150 200

S
pe

ed
up

 o
ve

r
ba

se
lin

e

Optimization #

DS #1
DS #2
DS #3
DS #4
DS #5

DS #13

Fig. 3. Data sets reactions to optimizations (susan e)

benchmark; the benchmarks are sorted by decreasing standard deviation of IPC across
all their data sets.

Figure 2 shows that MiBench benchmarks vary in their level of stability. There are
very stable benchmarks across data sets such as susan s, partly stable ones such as
adpcm c and highly varying ones such as tiff2rgba. susan s is an application
that smoothes images and has a regular algorithm with little control flow dependencies.
In this case, changing data set size or values does not influence the application’s IPC.
In contrast, adpcm c, which is a convertor of Pulse Code Modulation (PCM) samples,
and tiff2rgba, which is a convertor of TIFF images to RGBA color space, have
most of their execution time spent in encoding/decoding subroutines. These procedures
have many data and control flow dependencies and hence their behavior and IPC can
vary considerably among different data sets. Still, only 6 out of 26 benchmarks can be
considered unstable. The fact that the IPC of most benchmarks is fairly stable across
data sets is good news for iterative optimization, as it potentially makes performance
improvement across data sets possible in practice.

Yet, these experiments do not prove this trend will be consistent across all applica-
tions, or even across all data sets for a given application. For instance, crc32 is a sim-
ple application which performs a cyclic redundancy check. The core of the program is
a loop which references a large pre-defined array with a complex access function (sub-
script). For some function and cache size parameters, this reference could potentially
result in significant conflict misses, even though crc32 is only moderately unstable
across all our data sets.

Even though there are few unstable programs, the performance variations, when they
occur, are far from negligible. In 59 out of 560 experiments, a data set’s IPC was more
than ±10% away from the average, with a maximum of -64%.

3.2 Do Data Sets React Similarly to Optimizations ?

We now want to understand whether programs running different data sets react dif-
ferently to program optimizations. This issue is even more closely related to iterative
optimization.

250 G. Fursin et al.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 50 100 150 200

S
pe

ed
up

 o
ve

r
ba

se
lin

e

Optimization #

DS #1
DS #2
DS #3
DS #4
DS #5
DS #6
DS #7
DS #8
DS #9

DS #10
DS #11
DS #12
DS #13
DS #14
DS #15
DS #16
DS #17
DS #18
DS #19
DS #20

Fig. 4. Data sets reactions to optimizations (jpeg d)

Experiments show that the conclusions of Section 3.1 can in fact be misleading.
Programs can have fairly consistent behavior across data sets for a given optimization
configuration, e.g., the baseline -Ofast as in Section 3.1, but can react quite differ-
ently when optimized in a different manner. Consider benchmarksusan e in Figure 3;
for clarity, we only plotted 6 data sets, but they are representative of the different trends
over the 20 data sets. The x-axis corresponds to the optimization configuration id. As
explained in Section 2, an optimization configuration is a combination of optimization
flags and parameters; recall we evaluated 200 configurations. The y-axis is the speedup
over the baseline configuration. The configurations are sorted according to the speedup
for data set #1; therefore, any non-monotonic behavior in one of the other data set curves
means this data set reacts differently to one or several optimizations. In the rightmost 50
optimizations, the behavior of the benchmark across data sets varies wildly, with almost
30% difference for some optimizations. Similar variations are visible across the whole
optimization spectrum. The behavior of susan e as compared to the baseline results of
Section 3.1 provides a striking contrast. When the program is compiled with -Ofast,
its performance varies only moderately across all data sets. On the other hand, Figure 3
shows that for other optimizations this conclusion does not hold. Consequently, the re-
sults of Section 3.1 are misleading as they suggest iterative optimization can be easily
applied because performance is stable. The stability properties across data sets can sig-
nificantly vary with the program optimizations. As a result, iterative optimization across
data sets may prove a more complicated task.

Moreover, other programs can naturally exhibit strong variations for many optimiza-
tions. Consider, for instance, jpeg d in Figure 4; all 20 data sets are plotted. For some
optimizations, the speedup difference across data sets can exceed 50%. Unfortunately,
even though the rightmost 50 optimizations are consistently among the top performers
across all data sets and benchmarks, the higher their potential speedup, the higher their
variability as well.

Still, for some programs, the speedup variations across all optimizations can be
strong, but very consistent across data sets, and thus confirm the stability observed
in Section 3.1. Consider dijkstra in Figure 5; all 20 data sets have been plotted.

MiDataSets: Creating the Conditions 251

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0 50 100 150 200

S
pe

ed
up

 o
ve

r
ba

se
lin

e

Optimization #

DS #1
DS #2
DS #3
DS #4
DS #5
DS #6
DS #7
DS #8
DS #9

DS #10
DS #11
DS #12
DS #13
DS #14
DS #15
DS #16
DS #17
DS #18
DS #19
DS #20

Fig. 5. Data sets reactions to optimizations (dijkstra)

 0.01

 0.1

 1

 10

patricia

tiffdither

ispell

sha
lam

e
susan_s

qsort
dijkstra

CRC32

rijndael_e

rijndael_d

tiff2rgba

tiff2bw

m
ad

susan_e

blowfish_e

susan_c

stringsearch

blowfish_d

jpeg_d

bitcount

jpeg_c

rsynth

adpcm
_d

adpcm
_c

tiffm
edian

D
at

a
S

et
 d

is
ta

nc
e

Fig. 6. Data set distances

Performance is obviously very stable across all data sets and optimizations, even though
the speedups are far from negligible.

Overall, these three programs are fairly representative of the different possible be-
havior of the remaining benchmarks, and we roughly found the same number of bench-
marks belong to each of the three aforementioned categories. Consequently, a signif-
icant number of benchmarks are not so stable across data sets when factoring in the
optimizations, thereby complicating the iterative optimization task.

In order to summarize the stability of programs across data sets, we introduce a
data set distance metric. We define the distance d between two data sets i, j as: d =√∑

1≤opt≤200(s
i
opt − sj

opt)2, where opt denotes an optimization configuration. This
distance characterizes how differently two data sets react to optimizations. The reparti-
tion of distances of all possible pairs of data sets for a program is itself an indication of

252 G. Fursin et al.

Fig. 7. Best optimizations across data sets
(sha)

Fig. 8. Best optimizations across data sets
(susan c)

the program stability across data sets. On purpose, the metric is based on the absolute
speedup difference rather than the relative speedup, in order to compare distances across
programs. We compute the distances between all pairs of data sets for each program,
and report them in Figure 6. Programs like dijkstra, which are very stable across
data sets have small distances, no more than 0.1 to 0.5, while unstable programs like
jpged d have significant distances, more than 1; the maximum reported distance is
greater than 10 (see tiff2bw). At least 8 programs have rather large data set dis-
tances, characteristic of their unstable behavior across optimizations.

3.3 Does It Matter Which Data Set You Train on for Iterative Optimization ?

Because iterative optimization techniques almost systematically experiment with single
data sets, they both train and test on the same data set. With more data sets, it is possible
to move closer to a more realistic implementation of iterative optimization where train
and test sets are distinct.

In order to evaluate the impact of this more realistic situation, as well as the choice
of the training data set, we implement a simple iterative optimization strategy where
we train on a single data set and test on the 19 remaining data sets. For the training,
we exhaustively search the 200 optimizations on the single data set. We then select
the best configuration C for this data set, and run the remaining 19 data sets on the
program optimized with C. We then measure the difference between the performance
obtained with C and with the actual best possible optimization for each data set as
shown in Figures 7 and 8, where the x-axis corresponds to the training data set, the
z-axis corresponds to the testing data set.

While Section 3.2 shows that a significant fraction of the programs can react fairly
differently across data sets for many optimizations, it turns out that, for the best opti-
mization, programs have little or no variability with respect to data sets. Most programs
show similar trends to Figure 7. Out of all the 26 benchmarks that we studied, 20 bench-
marks show little variance when using the best optimization configuration of the differ-
ent data sets, therefore any data set could be used for iterative optimization. The best
optimization for that program will work well regardless of the data set used. This has
positive implications for the practical application of iterative optimization. However, it
should also be remebered that the sample number of configurations considered (200)

MiDataSets: Creating the Conditions 253

 0%

 5%

 10%

 15%

 20%

 avg2019181716151413121110987654321

P
er

ce
nt

 D
iff

er
en

ce

 Data set #

Fig. 9. Average best opt relative to best
opt(dijkstra)

 0%

 5%

 10%

 15%

 20%

 avg2019181716151413121110987654321

P
er

ce
nt

 D
iff

er
en

ce

 Data set #

Fig. 10. Average best opt relative to best
opt(tiff2rgba)

is small compared to the entire optimization space. It may be the case that for other
non-sampled configurations, that variation is much greater.

However there is a small group of programs that show medium to high variability
with regards to the best optimization among data sets. For this group of programs, a
user cannot simply use any single data set for iterative optimization if they wish to
obtain the best performance for the rest of that program’s data sets. Using the best op-
timization configuration of iterative optimization for any particular data set can signifi-
cantly degrade performance when used on other data sets of the same program over the
compiler’s baseline configuration. Fortunately, this occurs in only 6 of the 26 MiBench
benchmarks we evaluated.

It is worth noting that programs that are related (i.e., encoders/decoders of the same
audio/graphics formats or encryption/decryption algorithms for the same protocol) do
not necessarily have similar sensitivity to data sets. For example, the encoding version
of rijndael, has little variability with respect to the best performing optimization
configuration across data sets. In contrast, its decoding version, has large variability in
the performance of the best configuration across data sets.

3.4 Can Iterative Optimization Perform Well When Training Is Done over
Multiple Data Sets ?

We now see if iterative optimization can perform well if we train over multiple data sets.
It will also show whether it is possible to find an optimization configuration that is better
on average over all the data sets of a program than the highest level of optimization
available in the compiler.

For that purpose, we implement again a simple iterative optimization strategy which
finds the “best average” optimization configuration across all data sets. For each data
set, we compute the speedup achieved with each optimization, and determine which
optimization performs best across all data sets on average. This strategy roughly em-
ulates an iterative optimization process running for a long time, and finding the best
optimization configuration compromise. We then compare this “best average” configu-
ration against the actual best configuration for each data set.

254 G. Fursin et al.

1%
5%
10%

 0

 20

 40

 60

 80

 100

m
ea

n
C

R
C

32
ad

pc
m

_d
ad

pc
m

_csh
a

ri
jn

da
el

_e
ri

jn
da

el
_d

bl
ow

fi
sh

_e
bl

ow
fi

sh
_d

st
ri

ng
se

ar
ch

rs
yn

th
is

pe
ll

pa
tr

ic
ia

di
jk

st
ra

tif
fm

ed
ia

n
tif

fd
ith

er
tif

f2
rg

ba
tif

f2
bwm
ad

la
m

e
jp

eg
_d

jp
eg

_c
su

sa
n_

s
su

sa
n_

e
su

sa
n_

c
qs

or
t

bi
tc

ou
nt

N
um

be
r

of
 I

te
ra

tio
ns

101 113 138 111 100

Fig. 11. Number of Iterations to get within 1%, 5%, and 10% for all benchmarks

Figures 9 and 10 depict the results of our analysis for two programs. Each graph
shows the percent difference of the best optimization configuration found for each data
set relative to the best average configuration across all data sets. Interestingly, the best
average configuration across all data sets performs extremely well, typically within less
than 5% of the best optimization configuration for each data set. This again has very
positive implications for practitioners. We show in Section 3.3 that, for certain pro-
grams, it is important to not use one data set when performing iterative optimization.
In that section, we showed that the best optimization configuration for any one data set
can lead to potential degradation in performance when used with other data sets. Here
we show that a possible answer is to collect various data sets for programs with high
sensitivity to data sets and choose an optimization configuration that performs well on
average over these data sets.

3.5 How Fast Can Iterative Optimization Converge Across Multiple Data Sets ?

In this section we evaluate the difficulty of quickly finding good optimization configura-
tions using iterative optimization across multiple data sets, and more precisely of getting
close to the “best average” optimization mentioned in Section 3.4. For that purpose, we
iteratively pick random optimization configurations and apply them to all data sets until
the performance of the configuration is within a certain target percentage threshold of
the best average configuration found previously.

Figure 11 shows the average number of iterations needed to find optimizations that
are within 1%, 5%, and 10% of the best optimizations we found from a large explo-
ration of the space. The figure shows that with a relatively small number of evaluations
(usually around 5 evaluations) we obtain an optimization configuration that is within
10% of the best configuration found. Interestingly, if we want to be within 5% of the
best optimization configuration we found, for most programs, it requires on average less
than 10 evaluations. For only one program, dijkstra, is it a bit harder to obtain a config-
uration within 5% of the best configuration we found. This program requires on aver-
age evaluating around 30 configurations. Still, overall, relatively very few evaluations of

MiDataSets: Creating the Conditions 255

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

N
or

m
al

iz
ed

 b
y

-O
fa

st
 v

al
ue

Transformations Sorted By Increasing Speedup

Speedup and IPC for all MiBench benchmarks

SPEEDUP
IPC

Fig. 12. Speedup and IPC for all MiBench benchmarks (normalized by -Ofast value)

optimization configurations are required to get much of the benefit of expensive iterative
optimization. As one would expect on average it takes a much longer number of iterations
to get within 1%.

3.6 In Practice, Is It Possible to Compare the Effect of Two Optimizations on
Two Data Sets ?

Up to now, we have assumed that we can compare the impact of two optimizations
and/or two data sets. However, in practice, we cannot compute the speedup due to an
optimization because we would need two executions of the same data set: one to com-
pute the execution time of the baseline optimization, and another run to compute the
execution time of the optimization itself. As stated earlier, a user is unlikely to run the
same program on the same data set twice. Instead we would like to consider IPC as a
means of comparing the performance of two different optimization configurations on
different runs and data sets. IPC is an absolute performance metric and thus potentially
does not require a base line run to measure improvement in contrast to speedup. How-
ever, some optimizations, such as loop unrolling, can effect dynamic instruction count
which, in turn, affects the IPC.

Our experiments show that for most of the MiBench benchmarks (except two) the
best found option corresponds to the best found IPC. Figure 12 shows the average
speedup and IPC for all benchmarks and data sets for the MiBench benchmark rel-
ative to using PathScale’s -Ofast configuration. This result is good news for iterative
optimization as it means that we can use IPC to evaluate the effect of two optimization
configurations regardless of the data sets used.

However, we note that the observations in this section may not hold for some ar-
chitectures and with other compiler optimizations not evaluated in this study. In future
work, we plan to enhance the technique of comparing the effect of optimizations using
additional metrics to IPC and without the knowledge of the baseline execution time and
the data set.

256 G. Fursin et al.

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

ra
ge

 %
 d

iff
er

en
ce

 w
.r

.t.
 b

es
t

Iteration #

Iterative
Random
Baseline

Fig. 13. Results of continuous optimization experiment

4 Emulating Continuous Optimization

If iterative compilation becomes mainstream, compilers will continuously optimize pro-
grams across executions with different data sets. After each execution, a program’s per-
formance results will be analyzed and a new optimization configuration to evaluate will
be selected and the code will be optimized for the next execution. Some recent publica-
tions [19,16] describe run-time continuous optimization frameworks but do not evaluate
the influence of various datasets on optimizations and performance.

We leverage the observations of previous sections and attempt to emulate continu-
ous optimization under as real conditions as possible. In other words, we assume it is
not possible to know the speedup brought by a given optimization over baseline for a
data set, only IPC is available to understand the effect of an optimization, data sets are
executed in any order, and for each data set a different optimization is applied.

In addition, we use a simple strategy for selecting optimization configurations con-
tinuously. Each time an optimization configuration is tried on a data set, the IPC is
recorded, the average observed IPC for that configuration is updated, and the configura-
tions ranking is then updated accordingly. Upon each iteration, configurations are ran-
domly picked among the top Ntop configurations (or we progressively bias the choice
towards the current best known if not all optimizations have yet been tried; we use
Ntop = 10). In order to periodically revisit this ranking and adapt to new data sets, only
95% of the configurations are in fact picked among the Ntop top, the remaining 5% are
picked among all 200 configurations; the iterations where this occurs are themselves
randomly picked according to the 95/5 uniform distribution.

Because continuous optimization is bound to occur over many iterations, our num-
ber of data sets is still too limited, so they have to be executed multiple times, but
Section 3.2 suggests that there are not as many behavior as the number of data sets.
Therefore, iterating over a collection of data sets is a much more reasonable approxi-
mation than iterating over a single data set.

Figure 13 shows the average difference with respect to the best possible configura-
tion over the different iterations; this difference is itself averaged over all benchmarks,
so the point at iteration i corresponds to the average difference over all benchmarks at

MiDataSets: Creating the Conditions 257

that iteration. In addition to iterative compilation, the performance of a random
strategy (configurations randomly picked according to a uniform distribution) and the
baseline optimization are provided. The clear convergence of the iterative compila-
tion process towards the best possible configuration shows that it is possible to learn the
best optimizations, across data sets, and without any artificial means for evaluating the
effect of optimizations.

In this section, no attempt was made to speed up the convergence, hence, our fu-
ture work will take advantage of the existing literature on optimization search tech-
niques [10,11].

5 Related Work

Berube et al. construct a system called Aestimo which allows experimentation of
feedback-directed optimization using different inputs [5]. The authors collect a large
set of additional inputs for 7 SPEC benchmarks and study the variability of different in-
puts on inlining. They use the Open Research Compiler (ORC) and use profile-directed
input to control inlining. However, even though several data sets were collected for 7
benchmarks results and analysis in the paper are only presented for bzip2. The results
show that the choice of inputs from which to generate profile information and control
optimizations can have significant performance variability when used with different
inputs. In contrast, we find that input variability largely depends on the benchmarks
and/or the optimizations used, but for the most part most programs exhibit highly stable
performance across data sets.

Bartolini et al. develop a software-based approach, called CAT, that repositions code
chunks to improve cache performance [4]. The approach is profile-driven, that is, given
an instrumented run of the program, a profile is collected which contains precise de-
tection of possible interference between code chunks. The profile is then used to place
code into memory in a way that reduces i-cache miss rates. Since the layout of the code
is a function of the program input used during profiling, the authors evaluate different
inputs and execution conditions to see the effect on input sensitivity. The authors eval-
uate different inputs on four multimedia application (jpeg encoder/decoder and mpeg
encoder/decoder) and find that even though there is variability between inputs, their
code placement technique is robust to this variability. These two papers are steps in the
right direction to evaluating input sensitivity among programs, but they only present re-
sults for one optimization applied to a limited set of benchmarks and therefore general
conclusions about data sets, applications, or optimizations cannot be drawn. In contrast,
we look at the effects of many different optimizations applied to an entire benchmark
suite using a larger number of data sets.

Haneda et al. attempt to investigate the sensitivity of data inputs to iterative opti-
mization [15]. They perform iterative optimization using the train inputs on seven
SPEC benchmarks. They perform iterative optimization using GCC 3.3.1 and control
42 of its options to find the best configuration for these benchmarks. They use a tech-
nique called Orthogonal Arrays to perform iterative optimization since it allows them
to quickly find optimization flags that work well for a particular program. They obtain
the best optimization flags using the train inputs for each benchmark and then apply

258 G. Fursin et al.

this configuration to the benchmarks using the ref inputs. The authors find that the best
optimization configuration found using train works well when applied to ref inputs.

Kulkarni et al. describe a partially user-assisted approach to select optimization se-
quences for embedded applications [18]. This approach combines user-guided and per-
formance information with a genetic algorithm to select local and global optimization
sequences. As is usually the case with iterative optimization papers, the authors do
not consider input sensitivity and only show results for fixed benchmark/data set pairs.
Other authors [13,6] have explored ways to search program- or domain-specific com-
mand line parameters to enable and disable specific options of various optimizing com-
pilers. Again, these authors keep the benchmark/data set pairs fixed.

Machine learning predictive modelling has been recently used for non-search based
optimization. Here the compiler attempts to learn a good optimization heuristic offline
which is then used instead of the compiler writer’s hand-tuned method. While this work
is successful in speeding up the generation of compiler heuristics, the performance gains
have been generally modest. Stephenson et al. used genetic programming to tune heuris-
tic priority functions for three compiler optimizations: hyperblock selection, register
allocation, and data prefetching within the Trimaran’s IMPACT compiler [22]. The au-
thors construct their heuristic on a training data set and report results on both a training
data set and a test data set for the different optimizations. Using a data set different from
the one used for training causes some degradation and in some cases dramatic reduction
in performance. This may be due to the genetic algorithm “over-fitting” or specializing
to the data set being trained on.

Eeckhout et al. attempt to find a minimal set of representative programs and inputs
for architecture research [9]. They cluster program-input combinations using principal-
component analysis (PCA) of dynamic program charateristics, such as cache misses and
branch mispredictions. They find that while different inputs to the same program were
often clustered together, in several cases different inputs to the same program result in
data points in separate clusters.

MinneSPEC [21] is a set of reduced inputs for various SPEC CPU2000 benchmarks.
They are derived from the reference inputs using a variety of techniques, such as modi-
fying inputs (e.g., reducing number of iterations). They are often used to reduce simu-
lation time for architecture research.

6 Conclusions and Future Work

In this article, we present a data set suite, called MiDataSets, for the MiBench bench-
marks, which can be used for a more realistic evaluation of iterative optimization; this
suite will be made publicly available. The scope of this suite extends beyond iterative
optimization as many architecture research works are based on feedback mechanisms
which are sensitive to data sets.

We use this data set suite to understand how iterative optimization behaves in a more
realistic setting where the data set varies across executions. We find that, though pro-
grams can exhibit significant variability when transformed with several optimizations, it
is often possible to find, in a few iterations, a compromise optimization which is within
5% of the best possible optimization, across all data sets. This observation, supported

MiDataSets: Creating the Conditions 259

by a reasonable set of experiments (codes, optimizations, and data sets), has signif-
icant implications for the practical application and more widespread use of iterative
optimization. Especially in embedded systems, but in general-purpose systems as well,
the possibility that iterative optimization comes with great performance variability has
slowed down its adoption up to now.

In future work, we plan on implementing a practical continuous optimization frame-
work and enhance techniques of comparing the effect of optimizations without the
knowledge about the data set or base line execution. This will help both validating
the results of this article on a larger scale and in making iterative optimization more
practical. We also plan to investigate the many different possible continuous optimiza-
tion strategies on a fine-grain level, including for codes with high variability. We plan
to enhance our MiDataSets based on program behaviour and code coverage. We also
plan to evalute the influence of datasets on power and memory consumption which is
critical for embedded systems.

References

1. PAPI: A Portable Interface to Hardware Performance Counters. http://
icl.cs.utk.edu/papi, 2005.

2. PathScale EKOPath Compilers. http://www.pathscale.com, 2005.
3. F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. O’Boyle, J. Thomson, M. Tous-

saint, and C. Williams. Using machine learning to focus iterative optimization. In CGO-4:
The Fourth Annual International Symposium on Code Generation and Optimization, 2006.

4. S. Bartolini and C. A. Prete. Optimizing instruction cache performance of embedded sys-
tems. ACM Trans. Embedded Comput. Syst., 4(4):934–965, 2005.

5. P. Berube and J. Amaral. Aestimo: a feedback-directed optimization evaluation tool. In Pro-
ceedings of the International Symposium on Performance Analysis of Systems and Software
(ISPASS), 2006.

6. K. Chow and Y. Wu. Feedback-directed selection and characterization of compiler optimiza-
tions. In Proceedings of the Workshop on Feedback-Directed and Dynamic Optimization
(FDDO), 2001.

7. K. D. Cooper, A. Grosul, T. J. Harvey, S. Reeves, D. Subramanian, L. Torczon, and T. Wa-
terman. Acme: adaptive compilation made efficient. In Proceedings of the Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES), pages 69–77, 2005.

8. K. D. Cooper, P. J. Schielke, and D. Subramanian. Optimizing for reduced code space using
genetic algorithms. In Proceedings of the Conference on Languages, Compilers, and Tools
for Embedded Systems (LCTES), pages 1–9, 1999.

9. L. Eeckhout, H. Vandierendonck, and K. D. Bosschere. Quantifying the impact of input data
sets on program behavior and its applications. Journal of Instruction-level Parallelism, 2003.

10. B. Franke, M. O’Boyle, J. Thomson, and G. Fursin. Probabilistic source-level optimisation
of embedded programs. In Proceedings of the Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES), 2005.

11. G. Fursin, A. Cohen, M. O’Boyle, and O. Temam. A practical method for quickly evaluating
program optimizations. In Proceedings of the International Conference on High Performance
Embedded Architectures & Compilers (HiPEAC 2005), pages 29–46, November 2005.

12. G. Fursin, M. O’Boyle, and P. Knijnenburg. Evaluating iterative compilation. In Proc.
Languages and Compilers for Parallel Computers (LCPC), pages 305–315, 2002.

http://icl.cs.utk.edu/papi
http://icl.cs.utk.edu/papi
http://www.pathscale.com

260 G. Fursin et al.

13. E. Granston and A. Holler. Automatic recommendation of compiler options. In Proceedings
of the Workshop on Feedback-Directed and Dynamic Optimization (FDDO), 2001.

14. M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown.
Mibench: A free, commercially representative embedded benchmark suite. In IEEE 4th
Annual Workshop on Workload Characterization, Austin, TX, December 2001.

15. M. Haneda, P. Knijnenburg, and H. Wijshoff. On the impact of data input sets on statistical
compiler tuning. In Workshop on Performance Optimization for High-Level Languages and
Libraries (POHLL), 2006.

16. T. Kistler and M. Franz. Continuous program optimization: A case study. ACM Trans.
Program. Lang. Syst., 25(4):500–548, 2003.

17. T. Kisuki, P. M. W. Knijnenburg, and M. F. P. O’Boyle. Combined selection of tile sizes
and unroll factors using iterative compilation. In The International Conference on Parallel
Architectures and Compilation Techniques, pages 237–248, 2000.

18. P. Kulkarni, S. Hines, J. Hiser, D. Whalley, J. Davidson, and D. Jones. Fast searches for
effective optimization phase sequences. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), pages 171–182, 2004.

19. C. Lattner and V. Adve. Llvm: a compilation framework for lifelong program analysis &
transformation. In Proceedings of the International Symposium on Code Generation and
Optimization (CGO), 2004.

20. A. Nisbet. GAPS: Genetic algorithm optimised parallelization. In Proc. Workshop on Profile
and Feedback Directed Compilation, 1998.

21. A. J. K. Osowski and D. J. Lilja. MinneSPEC: A new SPEC benchmark workload for
simulation-based computer architecture research. Computer Architecture Letters, 1(2):10–
13, June 2002.

22. M. Stephenson, M. Martin, and U. O’Reilly. Meta optimization: Improving compiler heuris-
tics with machine learning. In Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), pages 77–90, 2003.

23. S. Triantafyllis, M. Vachharajani, and D. I. August. Compiler optimization-space explo-
ration. In Journal of Instruction-level Parallelism, 2005.

24. R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical optimization of software
and the ATLAS project. Parallel Computing, 27(1–2):3–35, 2001.

	Introduction
	Methodology
	Impact of Data Sets on Program Performance and Optimization
	Do Programs Exhibit Significant Performance Variations Across Data Sets ?
	Do Data Sets React Similarly to Optimizations ?
	Does It Matter Which Data Set You Train on for Iterative Optimization ?
	Can Iterative Optimization Perform Well When Training Is Done over Multiple Data Sets ?
	How Fast Can Iterative Optimization Converge Across Multiple Data Sets ?
	In Practice, Is It Possible to Compare the Effect of Two Optimizations on Two Data Sets ?

	Emulating Continuous Optimization
	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

