
Building a Practical Iterative Interactive Compiler

Grigori Fursin and Albert Cohen

ALCHEMY Group, INRIA Futurs and LRI, Paris-Sud University, France
{grigori.fursin,albert.cohen}@inria.fr

Abstract. Current compilers fail to deliver satisfactory levels of performance
on modern processors, due to rapidly evolving hardware, fixed and black-box
optimization heuristics, simplistic hardware models, inability to fine-tune the ap-
plication of transformations, and highly dynamic behavior of the system. This
analysis suggests to revisit the structure and interactions of optimizing compil-
ers. Building on the empirical knowledge accumulated from previous iterative
optimization prototypes, we propose to open the compiler, exposing its control
and decision mechanisms to external optimization heuristics. We suggest a sim-
ple, practical, and non-intrusive way to modify current compilers, allowing an
external tool to access and modify all compiler optimization decisions.
To avoid the pitfall of revealing all the compiler intermediate representation and
libraries to a point where it would rigidify the whole internals and stiffen further
evolution, we choose to control the decision process itself, granting access to the
only high-level features needed to effectively take a decision. This restriction is
compatible with our fine-tuning and fine-grained interaction, and allows to tune
programs for best performance, code size, power consumption; we also believe
it allows for joint architecture-compiler design-space exploration.By exposing
only the decisions that arise from the opportunities suggested by the program
syntax and semantics and only when the associated legality checks are satisfied,
we dramatically reduce the transformation search space.
We developed an Interactive Compilation Interface (ICI) with different external
optimization drivers for the commercial open-source PathScale EKOPath Com-
piler (derived from Open64); this interface is being ported to the GCC. This
toolset led to strong performance improvements on large applications (rather
than just kernels) through the iterative, fine-grain customization of compilation
strategies at the loop or instruction-level; it also enabled continuous (dynamic)
optimization research. We expect that iterative interactive compilers will replace
the current multiplicity of non-portable, rigid transformation frameworks with
unnecessary duplications of compiler internals. Furthermore, unifying the inter-
face with compiler passes simplifies future compiler developments, where the
best optimization strategy is learned automatically and continuously for a given
platform, objective function, program or application domain, using statistical or
machine learning techniques. It enables life-long, whole-program compilation
research, without the overhead of breaking-up the compiler into a set of well-
defined compilation components (communicating through persistent intermedi-
ate languages), even if such an evolution could be desirable at some point (but
much more intrusive). It also opens optimization heuristics to a wide area of iter-
ative search, decision and adaptation schemes and allows optimization knowledge
reuse among different programs and architectures for collective optimizations.

1 Introduction
Iterative compilation is a popular approach for optimizing programs for different objec-
tive functions on architectures with ever growing complexity, when traditional compil-
ers fails to deliver the best possible performance. Bodin et al. [7] and Kisuki et al. [24]
have initially demonstrated that exhaustively searching an optimization parameter space
for small kernels can deliver considerable performance improvements in comparison
with state-of-the-art, single-run compilers. Cooper et al. [11, 12, 10] and later Kulka-
rni et al. [25] demonstrated that finding optimal optimization order can also consider-
ably improve code quality and performance. We demonstrated hill-climbing and ran-
dom iterative search techniques to optimize large applications on a loop-level in [18].
Later Triantafyllis et al. [37, 36] suggested a pruning technique to considerably speed-
up optimization heuristic on a fine-grain level inside a compiler. Heydemann et al. [22]
used iterative compilation to find trade-off between code size and performance improve-
ment when using loop unrolling and code compression.

Iterative optimization has also been employed in well-known library generators in
such systems as ATLAS [38], FFTW [26] and SPIRAL [32] which tune parameters of
various transformations to get best performance on a targeted platform. Yotov et al. [39]
and Epshteyn [13] use analytical model-based approaches to optimize BLAS libraries.

Many recent results address the iterative tuning of compiler flags, targeting per-
formance or code size for a variety of applications [31, 20, 28–30, 14, 21]. Some of
these techniques are already used by companies internally to tune the final settings
of their compilers or even available to end-users such as PathOpt tool from the Path-
Scale EKOPath compiler suite [2] that is available since 2004 and allows to find the
best combination of flags iteratively using exhaustive, random, one of and all but one
search methods.

Machine-learning has been also investigated to predict good s transformations and
improve hand-tuned compiler heuristics [27, 35, 34, 9, 40, 6]. These works use genetic
programming, supervised learning, decision trees, predictive modeling and other similar
techniques to tune compiler heuristics usually for one or a few specific transformations.

In our research, we investigate practical aspects of iterative optimizations such
as fine-grain tuning of large applications [18, 15], predicting when to stop iterative
search [19], run-time optimizations and program low-overhead adaptation at fine-grain
level (procedure or loop) for different behaviors [17], investigating the influence of dif-
ferent datasets on iterative search and program performance [16], using machine learn-
ing to speed-up optimization process [6] or to speed-up performance prediction for the
effective architecture design space exploration [8].

Many interesting transformation and optimization tools have been developed for
the purpose of iterative and adaptive compilation. However, most of them are incom-
patible with each other and not easily portable across architectures. Moreover, using
source-to-source optimizations and pragmas can result in heavy, unreadable and non-
portable programs that can perform worse on new architectures, so that additional de-
optimization/re-optimization techniques may be needed [23]. What makes things worse
is an additional, often unpredictable and unquantifiable interference of the tools with
hidden/black-box internal compiler optimizations. The most important motivation for
our proposed framework is that current tools tend to rewrite and duplicate parts that

are currently available inside most compilers, simply because compilers themselves are
often seen as untouchable: they rely on intricate transformation engines, undocumented
and multi-purpose heuristics, pass orderings and intermediate representations fragile
to any modification, providing no support for external tuning and on-demand applica-
tion of specific transformations. We would like to discrown these myths in this paper
and show that current compilers can be used as powerful, flexible yet stable iterative
interaction transformation toolsets, their existing heuristics being initially treated as
black-boxes, i.e. the inputs and outputs are known but the internal behavior is not, and
progressively learned to adapt to a give program on a given architecture.

We developed an Interactive Compilation Interface (ICI) for the commercial Path-
Scale EKOPath Compiler to bias all internal optimization decisions and their param-
eters externally. It is a non-intrusive, stable and flexible way to tune programs at a
function, loop or instruction level for best performance, code size, power consumption
and any other objective function supported by existing heuristics and an external driver.
Current version of the ICI works in the informative and reactive mode, when external
tools rather than querying a compiler to apply some specific transformation on a given
part of the program, first obtain information from an interactive compiler about all pos-
sible legal transformations and their parameters for a specific part of the code and later
respond to the compiler to either keep compiler decisions or change them based on
statistical and machine learning techniques. This can considerably reduce optimization
search space since there is no need to attempt to traverse through illegal or not supported
transformations. Still, reactive nature of our method allows external tools to select and
parameterize any possible legal sequences of transformations.

We extend the current ICI to support GCC, whose recent versions feature a large
number of advanced transformations but with ineffective heuristics. We plan to add
support for the reordering of the optimization passes in the GCC to our ICI on a func-
tion or loop level, since it already has a relatively clean description of such passes on
a global program level. We suggest to substitute current multiple transformation tools
with such iterative interactive compilers and use external tools to fine-tune their op-
timization heuristics. Tools that achieve best results can later be easily and transpar-
ently added to the compiler, all the users being immediately able to take advantage of
this improvement. Moreover, using unified ICI allows optimization knowledge reuse
among different programs and architectures with statistical and machine learning tech-
niques. It also simplifies future compiler development when adding new transforma-
tions: e.g., their optimization heuristic can be automatically and continuously learned
with machine-learning techniques in the external driver.

2 Motivation
To motivate our research on an open iterative research compiler, we decided to consider
some current optimization techniques for mgrid application from SPEC CPU2000FP
benchmark suite [33]. From [18] we know that source-to-source loop tiling(blocking)
and unrolling on mgrid from SPEC CPU95FP can reduce its execution time. We used
the same source-to-source transformation tool from [18] and hill-climbing search to it-
eratively find best tiling and unrolling factors for two most-time consuming loops from
procedures resid and psinv for this benchmark on a recent AMD Athlon 64 3700+ plat-

Program version: Loop from procedure/ source-to-source internal speedup:
transformation: transformation factor: transformation factor:

Best variant resid/loop tiling not-found 15 and 182 1.13
found with resid/loop unrolling 8 2

source-to-source psinv/loop tiling not-found 18 and 204
transformer psinv/loop unrolling 8 2
Best variant resid/loop tiling not-needed 60 1.17
found with resid/loop unrolling not-needed 13
interactive psinv/loop tiling not-needed 9
iterative psinv/loop unrolling not-needed 14
compiler

Table 1. Comparison of best factors found for mgrid benchmark when using source-to-source
transformation tool and interactive iterative compiler

form. Later, we applied the same hill-climbing search but using our iterative interactive
PathScale EKOPath Compiler.

The results presented in table 1 show that though we reduced execution time using
our older source-to-source transformer but interference with internal compiler transfor-
mations diminished the result. Previously, we often had to reduce the optimization level
of the compiler to remove such ambiguities and sometimes could even improve results,
but supporting less transformations than the compiler we could miss some important
optimizations. Using interactive iterative compiler, we both avoid this problem and ob-
tain much better result. Moreover, performing optimizations only inside compiler, we
reduce and simplify the optimization space since compiler suggests only legal transfor-
mations. In addition, many transformations currently applied by the compiler are not
profitable (as noticed in [36]) which can also improve the precision of machine learn-
ing techniques that we currently use to improve compiler heuristics, quickly find best
optimizations or predict best performance, for example (extension of [6, 8]).

Since we bias compiler optimization decision instead of querying it to apply some
specific transformation at a particular place in the program, we naturally force com-
piler to apply aggressively all possible transformations and later de-select unnecessary
transformations or change parameters to apply sequences of transformations. Similar
method has been used in PathOpt optimization tool (all but one search strategy) and
later in [29, 30]. The optimization target in these tools are global/procedure-level com-
piler flags and the main goal is to speed-up the search. However, we noticed, that when
optimizing program at fine-grain level in a complex optimization space, turning on all
optimizations and later de-selecting some of them would not speed-up the search since
multiple ambiguous interactions of various transformations could often considerably
degrade the performance. Hence, we use this method to naturally bias compiler op-
timization decisions externally and we use machine learning techniques to find best
optimizations in large optimization spaces quickly (as in [6]) and run-time versioning
to further speed-up the search and to adapt to different program behaviors at run-time
(as in [17]). We should also note, that some of the source-to-source automatic or manual
transformations are still needed since they may be syntactic and difficult to implement
inside a compiler. We are currently implementing an ICI for an open-source GCC and

ICI1
Perform
transf. 1

 Decision for
transformation 1

ICI2
Perform
transf. 2

 Decision for
transformation 2

ICIi
Perform
transf. i

 Decision for
transformation i

Rigid compiler
optimization heuristic

“black box”

Program
Optimization

Database

Binary

External
compiler
drivers

Iterative Interactive
Compiler

Application

Binary

Source-to-source
transformers

Binary-to-binary
transformers

Application

Decision for Perform
transformation 1 transf 1

Decision for Perform
transformation i transf i

Sub-heuristic i

Sub-heuristic 1

Sub-heuristic j

Sub-heuristic 2

Sub-heuristic k

Compiler optimization
heuristic

(a) (b)

Fig. 1. Internals of (a) current compilers and (b) interactive compilers

plan to gradually add more transformations to this compiler while learning their heuris-
tics automatically.

3 Compiler Framework
Based on our previous experience on iterative optimizations [18, 15, 17, 6, 16], the prac-
tical open iterative interactive compiler should have the following features:

– allows simple and unified mechanism to obtain information about all compiler de-
cisions externally and bias them;

– reuses all the compiler program analysis routines to avoid duplications in external
optimization tools;

– transparent to user - no project modifications needed;
– removes unnecessary interactions between source-to-source optimizers, compiler

and back-end binary-to-binary translators;
– narrows down the optimization search space by using only legal transformations

for a given application;
– allows fine-grain (function, loop or instruction level) tuning to get better quality

code;
– simplifies compiler development and tuning for new architectures;
– allows reuse of information among different programs and architectures;
– allows modular pluggable third-party transformations and optimization tools.

To address these issues, we suggest the structure of a practical iterative compiler
with an Interactive Compilation Interface as shown in Figure 1. This figure depicts an
abstract representation of current compilers with hardwired and often ineffective opti-
mization heuristics (Figure 1a) and of the suggested interactive compiler (Figure 1b)).
Whenever compiler optimization heuristic makes a potentially ineffective decision to
apply some transformation, compiler has to “push out” all the analysis information pre-
ceded this decision and provide a user an ability to modify this decision and parameters
of this transformation externally through an ICI. We can still treat compiler heuristic
as a black box, i.e. where only inputs (compiler decisions) and desired output (perfor-
mance metrics or other objective function) are known without knowledge about internal
structure and transformation interactions, but exposing all decisions at all possible lev-
els (global, function, loop, instruction) allows external tools to automatically learn this
behavior and adapt to specific programs and architectures.

The pitfall would be to reveal the compiler intermediate representation and libraries,
to a point where it would rigidify the whole internals and stiffen further evolution. To
avoid this pitfall, we choose to control the decision process itself, granting access the
only high-level features needed to effectively take a decision. This restriction is com-
patible with our fine-tuning and fine-grained interaction, and allows to tune programs
for best performance, code size, power consumption; we also believe it allows for joint
architecture-compiler design-space exploration. By exposing only the decisions that
arise from the opportunities suggested by the program syntax and semantics (e.g., de-
tecting that two loops are candidates for tiling), and only when the associated legality
checks are satisfied (e.g., checking dependence properties), we dramatically reduce the
combinatorial space of program transformation sequences that is searched by external
optimization drivers. In fact, we only provide the external optimizer with the combi-
nations currently suggested by the opportunity and legality analyses triggered on the
compilation unit, granting it access to the only program features embedded into the
compiler’s specific optimization passes. We believe that this approach of interacting
with a compiler will simplify the tuning process of new optimization heuristics and
will eventually simplify the whole compiler design where compiler heuristics will be
learned automatically, continuously and transparently for a user using statistical and
machine learning techniques.

We are developing several communication methods with an interactive compiler -
through external file/database, as a client/server connection and through internal calls
with a tightly coupled external tool. As a first step, we decided to use external file
tor communicate with a compiler similar to common feedback-directed compilation
as shown in figure 2. In a write mode simply invoked by setting environment vari-
able PATHSCALE ICI W to 1, compiler generates an external XML transformation
file that contains information about all applied transformations, their parameters and
available analysis information. This communication method allows transparent opti-
mizations without any modifications of the source code or project files. An external
tool can parse this file with any standard XML parser and modify parameters of ex-
isting transformations or disable them. This file is later feeded back to the compiler in
the read mode by setting environment variable PATHSCALE ICI R to 1. In this mode
compiler reads and parses modified XML transformation file while optimizing program

Analysis, decision
and parameters for

decision for
optimization

Apply
transformation

Application

Executable

Saved decisions
and parameters for
transformations

In
te

ra
ct

iv
e

C
om

pi
la

ti
on

In

te
rf

ac
e

Compiler

External output
transformation file

Write mode Read mode

External input
transformation file

Read/Write mode

…

Modified decisions
and parameters for
transformations

…

Fig. 2. Communication with external tools through transformation file

and substitutes its heuristic decisions and parameters with the matched ones from the
transformation file. A sample transformation output for swim is shown in figure 3.

When applying transformations that may change loop ordering such as loop inter-
change, fusion/fission, tiling and others, the subsequent optimization decisions of the
compiler can change and will not be matching with the optimization order in the exter-
nal transformation file. This may result in skipping some externally modified decisions
that can cause inconsistencies for external tools when automatically learning the behav-
ior of the program. In such cases, iterative recompilation is required, when interactive
compiler and external tool iteratively process the transformation file, refine optimiza-
tion decisions occurred at each iteration and recompile the program until the the desired
sequence of decisions is achieved. To enable such recompilation a read/write mode of
the interactive compiler is used (when both environment variables PATHSCALE ICI W
and PATHSCALE ICI R are set to 1). In such mode, compiler reads and matches the
transformation file with internal optimization decisions, and at the same time produces
a new transformation file that contains both modified and unmatched optimization de-
cisions. The iterative recompilation algorithm is shown in figure 4. Naturally, this mode
is also used to apply any legal sequences of transformations, thus demonstrating how a

<?xml version="1.0"?>
<compiler_ici>
 <file_name="swim.f">

 <transformation name="unroll_and_peel">
 <function>calc1</function>
 <loop_number>4</loop_number>
 <depth>1</depth>
 <decision>4</decision>
 <factor>7</factor>
 </transformation>

 <transformation name="unroll_and_peel">
 <function>calc1</function>
 <loop_number>3</loop_number>
 <depth>1</depth>
 <decision>4</decision>
 <factor>7</factor>
 </transformation>
 …

</file_name>
</compiler_ici>

Fig. 3. Example of the transformation XML
file for swim

 clear transformation_file_out.xml
 set PATHSCALE_ICI_W to 1
 compile program
 (write transformation_file_out.xml)
 set PATHSCALE_ICI_R to 1
_label_recompile:
 copy transformation_file_out.xml to
 transformation_file_in.xml
 modify transformation_file_in.xml if needed
 compile program
 (read transformation_file_in.xml,
 write transformation_file_out.xml)
 if transformation_file_in.xml not the same
 as transformation_file_out.xml
 go to _label_recompile

Fig. 4. Iterative recompilation algorithm to
apply sequences of transformations

compiler with a hardwired heuristic can become a flexible transformation tool with our
Interactive Compilation Interface. However, for some large applications, using external
file and read/write compiler mode for interaction with external tools may require several
recompilation and can be time consuming. This motivated us to develop a prototype of
a client/server communication method where decisions can be modified during during
compilation time and therefore no further recompilation is needed.

Currently, we added support to modify internal PathScale EKOPath compiler opti-
mization decisions for the following transformations:

inlining, array padding (global/local), loop fusion/fission,
loop interchange, loop blocking, loop unrolling, register tiling,
prefetching.

4 Tools and Experiments
We expect to substitute multiple often non-portable and non-compatible transformation
tools with our iterative interactive compiler as shown in figure 5. In this case, optimiza-
tions will be performed continuously and transparently to user, i.e. it will not require
any modifications of a source code or project files. All information about best found
optimizations on a given architecture is saved in a Program Transformation Database
kept along with a program. This simplify application development, optimization and
portability since no information about optimizations is now hardwired in the source
code of the program and there is no dependence on multiple external tools that may
not be available on some architectures. Moreover, Program Transformation Database
keeps information about all best possible optimizations for different program behaviors
on different architectures (as described in [17]). Therefore, whenever program is ported
to a new platform, the optimization process can start from already found best configu-
rations from multiple programs thus reusing optimization knowledge among different

application

binary

source-to-source
transformations

current compilers

execution

binary-to-binary
transformations

(a)

application

binary

source-to-source
transformations

Iterative Interactive
Compiler

execution

binary-to-binary
transformations

(b)

Program
Transformation

Database

iterative
optimizations/machine

learning

Continuous
adaptive

optimizations

Fig. 5. Iterative optimization scenario using iterative interactive compiler

programs and architectures, behaving as a collective compilation system and consider-
ably narrowing down the optimization search space.

Since 2004, we and our colleagues actively used our iterative interactive compiler
in different projects and developed or prototyped the following support tools and opti-
mization drivers.

– Continuous iterative optimization driver with run-time adaptation at function, loop-
level or instruction level using low-overhead phase detection technique (as de-
scribed in [17]. We use exhaustive, random and hill-climbing search strategies (as
in [7, 18, 15]). We also use a all but one search strategy on a fine-grain level similar
to the one implemented in the PathOpt tool from the original PathScale EKOPath
compiler distribution where global compiler flags are turned all on at the first step
and later turned off one by one.

– Driver to continuously collect all possible optimization parameters. This driver is
useful when compiler optimization heuristics is treated as a black box and its be-
havior is learned automatically to collect all varieties of optimization decisions and
parameters automatically and transparently to a user, instead of listing them sepa-
rately and keeping them up-to-date.

– Driver to automatically and continuously rebuild compiler optimization heuristic,
and adapt to a specific architecture using statistical methods and collective opti-
mization knowledge reuse among different programs and architectures.

1

1.05

1.1

1.15

1.2

1.25

1.3

applu
m

grid

gzip
crafty

galgel

bzip2
wupwise

swim
equake

lucas

sp
ee

d
u

p

benchmarks from SPEC CPU2000

Fig. 6. Speedups of several SPEC CPU2000 applications in comparison with -Ofast optimization
level when using interactive PathScale EKOPath compiler with hill-climbing search

– Prototype framework to replace a model-based compiler heuristic with automati-
cally learned one. We use our iterative interactive compiler together with the WEKA tool [3],
which is an open-source machine learning software package. Our preliminary re-
sults target loop interchange; we will revisit the main optimizations for which ma-
chine learning techniques have been proposed so far, as well as experiment with
more challenging ones.

We developed multiple support tools and external optimization drivers for our iter-
ative interactive compiler. We already created various tools to support our ICI-enabled
compiler and we developed several external optimization tools that uses iterative search
to find best transformations and their parameters to minimize execution time of pro-
grams. We use exhaustive, random and hill-climbing search (as in [7, 18, 15]), all but
one of search (implemented in the PathOpt tool from the original PathScale EKOPath
compiler suite [2] when all compiler flags are turned on and later turned-off one by one).
We also use this interactive compiler with program optimizations at fine-grain level for
run-time program adaptation described in [17].

Since the purpose of this article is mainly to describe the building of an interactive
iterative compiler, we decided to leave complex iterative optimization schemes for the
journal version of the paper and selected a relatively simple hill-climbing optimization
scheme as described in [18, 15]. We performed all experiments on AMD Athlon 64
3700+ at 2.4GHz, with an L1 cache of 64KB and an L2 cache of 1MB, and 3GB of
memory; the O/S is Mandriva Linux 2006. We instrumented the open-source commer-
cial PathScale EKOPath Compiler 2.x [2] to enable Interactive Compilation Interface
to allow external tuning of its optimization heuristic. It has a mature but ambiguous
optimizer with many transformations available, based on the ORC compiler, and is

specifically tuned to AMD processors. We selected several programs from the SPEC
2000 suite [33] and ran our search tool continuously and transparently to user until all
transformations and their parameters have been analyzed. Whenever possible, we used
run-time versioning scheme from [17] to considerably speed-up iterative search and
allow further run-time adaptation. We needed from around 500 to 5000 runs (with 16
versions of examined functions during one run) per program to finish optimizations.
The speedups shown in figure 6 in comparison with the best -Ofast optimization level
of the EKOPath compiler demonstrate that it is possible to beat the state-of-the-art com-
piler even on large programs with the most aggressive optimization level enabled using
simple Interactive Compilation Interface and external iterative optimization drivers. We
will describe all other optimization scenarios in more detail in the journal version of the
paper and will make all the software, source codes and data publicly available at [4].

5 Conclusions and Future Work
In this article we demonstrated a simple, practical and non-intrusive way to turn cur-
rent rigid compilers into powerful interactive transformation toolset with an Interactive
Compilation Interface that allows to bias compiler optimization decisions externally.
We show how to avoid the pitfalls of rigidifying the compiler internals, while granting
access to rich-enough features to take performance-critical decisions. We assist the ex-
ternal optimization tools in considerably reducing the size of the optimization search
space by analyzing only possible transformations, and in continuously collecting the
most interesting sets of transformation parameters. We developed an ICI for the com-
mercial open-source PathScale EKOPath Compiler and, within last 2 years, developed
different support tools to optimize programs at loop or instruction level continuously
and transparently to a user. We use it to automatically optimize programs for the best
performance, code size, power consumption and hardware designs. We plan to make all
the software publicly available at [4].

Based on this work, we are currently developing a unified extensible and portable
ICI in the latest version of GCC [5] with a support from IBM, Philips (NXP), STMicro,
ARC and multiple universities within HiPEAC network of excellence [1]. We enable
an access to the most influential compiler transformations (including OpenMP direc-
tives) with ineffective optimization heuristics and enable optimization pass reordering
at a function or loop level. We are working on the optimization naming conventions
to enable portability and automatic knowledge reuse using machine learning between
different compilers and their versions. We plan to add ICI to the JIT-compilers (Jikes,
.NET compilers) to unify the run-time optimizations as well. One of the most advan-
tages of a unified ICI is that it enables life-long, whole-program compilation research
with collective reuse of the knowledge (program features, analysis results and transfor-
mation decisions) across different programs and architectures without the overhead of
breaking-up the compiler into a set of well-defined compilation components (commu-
nicating through persistent intermediate languages), even if such an evolution could be
desirable at some point (but much more intrusive).

We are using our toolset in the EU-funded MilePost, SARC and GGCC projects.
Within MilePost, we aim at dramatically changing and simplifying the design of future
compilers on rapidly evolving hardware by automatically and continuously learning
the best optimization settings for a given program, context, platform and any given set

of compiler transformations. Within SARC, we facilitate collective optimization-space
exploration of the architecture and compiler, on a heterogeneous chip multi-processor.
Within GGCC, we contribute to the emergence of a production-quality standard for
whole-program analysis and optimization. We believe this is a major research and de-
velopment direction towards a practical and general-purpose development toolset based
on integrative compilation.

6 Acknowledgments
The authors would like to thank Olivier Temam and Michael O’Boyle for the helpful
discussions and support throughout the project, and anonymous reviewers for a valuable
feedback. This research is partly funded by the European Network of Excellence on
High-Performance Embedded Architecture and Compilation (HiPEAC).

References
1. European Network of Excellence on High-Performance Embedded Architecture and Com-

pilation (HiPEAC). http://www.hipeac.net.
2. PathScale EKOPath Compilers. http://www.pathscale.com.
3. WEKA: Open-source machine learning software. http://www.cs.waikato.ac.nz/

ml/weka.
4. Interactive Compilation Interface for PathScale EKOPath Compiler. http://

sourceforge.net/projects/pathscale-ici, 2004.
5. GCC Interactive Compilation Interface. http://sourceforge.net/projects/

gcc-ici, 2006.
6. F. Agakov, E. Bonilla, J.Cavazos, B.Franke, G. Fursin, M. O’Boyle, J. Thomson, M. Tous-

saint, and C. Williams. Using machine learning to focus iterative optimization. In Proceed-
ings of the International Symposium on Code Generation and Optimization (CGO), 2006.

7. F. Bodin, T. Kisuki, P. Knijnenburg, M. O’Boyle, and E. Rohou. Iterative compilation in
a non-linear optimisation space. In Proceedings of the Workshop on Profile and Feedback
Directed Compilation, 1998.

8. J. Cavazos, C. Dubach, F. Agakov, E. Bonilla, M. O’Boyle, G. Fursin, and O. Temam. Au-
tomatic performance model construction for the fast software exploration of new hardware
designs. In Proceedings of the International Conference on Compilers, Architecture, And
Synthesis For Embedded Systems (CASES 2006), October 2006.

9. J. Cavazos and J. Moss. Inducing heuristics to decide whether to schedule. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), 2004.

10. K. Cooper, A. Grosul, T. Harvey, S. Reeves, D. Subramanian, L. Torczon, and T. Water-
man. ACME: adaptive compilation made efficient. In Proceedings of the Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES), 2005.

11. K. Cooper, P. Schielke, and D. Subramanian. Optimizing for reduced code space using
genetic algorithms. In Proceedings of the Conference on Languages, Compilers, and Tools
for Embedded Systems (LCTES), pages 1–9, 1999.

12. K. Cooper, D. Subramanian, and L. Torczon. Adaptive optimizing compilers for the 21st
century. Journal of Supercomputing, 23(1), 2002.

13. A. Epshteyn, M. Garzaran, G. DeJong, D. Padua, G. Ren, X. Li, K. Yotov, and K. Pingali.
Analytic models and empirical search: A hybrid approach to code optimization. In Proceed-
ings of the International Workshop on Languages and Compilers for Parallel Computing
(LCPC), Hawthorne, NY, USA, 2005.

14. B. Franke, M. O’Boyle, J. Thomson, and G. Fursin. Probabilistic source-level optimisation
of embedded programs. In Proceedings of the Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES), 2005.

15. G. Fursin. Iterative Compilation and Performance Prediction for Numerical Applications.
PhD thesis, University of Edinburgh, United Kingdom, 2004.

16. G. Fursin, J. Cavazos, M. O’Boyle, and O. Temam. Midatasets: Creating the conditions
for a more realistic evaluation of iterative optimization. In Proceedings of the International
Conference on High Performance Embedded Architectures & Compilers (HiPEAC 2007) (to
appear), January 2007.

17. G. Fursin, A. Cohen, M. O’Boyle, and O. Temam. A practical method for quickly evalu-
ating program optimizations. In Proceedings of the International Conference on High Per-
formance Embedded Architectures & Compilers (HiPEAC 2005), pages 29–46, November
2005.

18. G. Fursin, M. O’Boyle, and P. Knijnenburg. Evaluating iterative compilation. In Proceedings
of the Workshop on Languages and Compilers for Parallel Computers (LCPC), pages 305–
315, 2002.

19. G. Fursin, M. O’Boyle, O. Temam, and G. Watts. Fast and accurate method for determining
a lower bound on execution time. Concurrency: Practice and Experience, 16(2-3):271–292,
2004.

20. M. Haneda, P. Knijnenburg, and H. Wijshoff. Generating new general compiler optimization
settings. In Proceedings of the 19th annual international conference on Supercomputing
(ICS’05), pages 161–168, New York, NY, USA, 2005.

21. M. Haneda, P. Knijnenburg, and H. Wijshoff. On the impact of data input sets on statistical
compiler tuning. In Proceedings of the Workshop on Performance Optimization for High-
Level Languages and Libraries (POHLL), 2006.

22. K. Heydemann and F. Bodin. Iterative compilation for two antagonistic criteria: Application
to code size and performance. In Proceedings of the 4th Workshop on Optimizations for DSP
and Embedded Systems, colocated with CGO, 2006.

23. S. Hines, P. Kulkarni, D. Whalley, and J. Davidson. Using de-optimization to re-optimize
code. In Proceedings of the EMSOFT Conference, pages 114–123, 2005.

24. T. Kisuki, P. Knijnenburg, M. O’Boyle, and H. Wijshoff. Iterative compilation in pro-
gram optimization. In Proceedings of the Workshop on Compilers for Parallel Computers
(CPC2000), pages 35–44, 2000.

25. P. Kulkarni, W. Zhao, H. Moon, K. Cho, D. Whalley, J. Davidson, M. Bailey, Y. Paek, and
K. Gallivan. Finding effective optimization phase sequences. In Proc. Languages, Compil-
ers, and Tools for Embedded Systems (LCTES), pages 12–23, 2003.

26. F. Matteo and S. Johnson. FFTW: An adaptive software architecture for the FFT. In Pro-
ceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing,
volume 3, pages 1381–1384, Seattle, WA, May 1998.

27. A. Monsifrot, F. Bodin, and R. Quiniou. A machine learning approach to automatic pro-
duction of compiler heuristics. In Proceedings of the International Conference on Artificial
Intelligence: Methodology, Systems, Applications, LNCS 2443, pages 41–50, 2002.

28. Z. Pan and R. Eigenmann. Rating compiler optimizations for automatic performance tuning.
In Proceedings of the International Conference on Supercomputing, 2004.

29. Z. Pan and R. Eigenmann. Fast and effective orchestration of compiler optimizations for
automatic performance tuning. In Proceedings of the International Symposium on Code
Generation and Optimization (CGO), pages 319–332, 2006.

30. Z. Pan and R. Eigenmann. Fast automatic procedure-level performance tuning. In Pro-
ceedings of the Conference on Parallel Architectures and Compilation Techniques (PACT),
Seattle, WA, September 2006. IEEE Computer Society.

31. R. Pinkers, P. Knijnenburg, M. Haneda, and H. Wijshoff. Statistical selection of compiler op-
tions. In Proceedings of the IEEE International Symposium on Modeling, Analysis, and Sim-
ulation of Computer and Telecommunication Systems (MASCOTS), pages 494–501, 2004.

32. B. Singer and M. Veloso. Learning to predict performance from formula modeling and
training data. In Proceedings of the Conference on Machine Learning, 2000.

33. The Standard Performance Evaluation Corporation. http://www.specbench.org.
34. M. Stephenson and S. Amarasinghe. Predicting unroll factors using supervised classification.

In Proceedings of International Symposium on Code Generation and Optimization (CGO),
pages 123–134, 2005.

35. M. Stephenson, M. Martin, and U. O’Reilly. Meta optimization: Improving compiler heuris-
tics with machine learning. In Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), pages 77–90, 2003.

36. S. Triantafyllis, M. Vachharajani, and D. August. Compiler optimization-space exploration.
In Journal of Instruction-level Parallelism, 2005.

37. S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D. August. Compiler optimization-
space exploration. In Proceedings of the International Symposium on Code Generation and
Optimization (CGO), pages 204–215, 2003.

38. R. Whaley and J. Dongarra. Automatically tuned linear algebra software. In Proc. Alliance,
1998.

39. K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garzaran, D. Padua, K. Pingali,
P. Stodghill, and P. Wu. A comparison of empirical and model-driven optimization. In Pro-
ceedings of the Conference on Programming Language Design and Implementation (PLDI),
pages 63–76, 2003.

40. M. Zhao, B. R. Childers, and M. L. Soffa. A model-based framework: an approach for
profit-driven optimization. In Third Annual IEEE/ACM Interational Conference on Code
Generation and Optimization, pages 317–327, 2005.

